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ABSTRACT

The three-dimensional singular stress field near the terminal

point 0 of the crack front edge at the surface of an elastic body is

investigated. Displacements are assumed to be of the form r X P F(e,O)

where spherical coordinates r, e,0are used, and where p is the distance

from the singularity line (crack front edge or notch edge) and p is a

given constant. The variational principle governing the displacement

distribution on a unit sphere about point 0 is derived from the dif-

ferential equations of equilibrium, and more directly, from the po-

tential energy. A finite element method developed on the unit sphere

is used to reduce the problem to the form k(X)3s 0 where xc is the

column matrix of the nodal values of the displacements on the unit

sphere and k(k~) is a square matrix, all coefficients of which are

quadratic polynomials in %. It is proved that the variational princi-

ple as well as the matrix k must be nonsymmetric, which implies that

complex eigenvalues X are possible. Several numerical and analytical

solutions are compared and agree closely with the present work. By

energy flux arguments it is found that the front edge of a propagating

crack must terminate at the surface obliquely at a certain angle,

whose dependence upon the inclination of a crack plane is also solved.

The angle is the same for Modes II and III, but different for Mode I.

For Mode 1, the surface point trails behind the interior of the pro-

pagating crack, while for Modes II and III it moves ahead. Consequently,

a combination of Mode I with Modes II and III is impossible at the

surface terminal point of a propagating crack whose plane is orthogonal.

iv



When the plane is inclined, the three intensify factors can com-

bine only in certain fixed ratios. The crack edge angle is a
function of the angle of the crack plane. Some results are also

presented for notches and for cracks that intersect a two-material

interface.
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INTRODUCTION

Crack propagation in thin sheets is undoubtedly influenced by

the surface termination of the crack front edge, where the planar

elasticity solution for the crack-tip singularity does not apply and

the singular stress field is of three-dimensional nature. A similar

situation arises when the crack front edge intersects a two-material

interface. Knowledge of the three-dimensional singularity is needed

to determine the curved shape of the crack front edge across a thin

sheet or plate, and the energy release rate for the advance of the

crack front edge as a whole.

The three-dimensional displacement field near the terminal point

of the crack front edge at the surface of an elastic body is investi-

gated in Chapter I using spherical corrdinates r, G, 0. The basic

idea of the present method of solution consists of an extension of the

Knein-William's method [1,2] by assuming that all three displacements

are of the form r P F(8,0) [3], where p is the distance from the

singularity line, such as the crack front edge or notch edge; P is a

given constant; F(0,0) is an arbitrary function of the coordinates

9 and 0; r is the distance from the terminal point 0; and X is the

strength singularity exponent. Similar techniques for solving two-

dimensional axisymmetric problems have also been employed in Refs.

[4,5,6]. A partly similar approach has been used by Swedlow and

Karabin ['].

The variational equation governing the displacement distribution

on a unit sphere about the sin,.,arity point 0 is derived from the

" ' - ... .. 7 _ . ....i, .--: .. ... -: - " . ... " ' ' .. ....1
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differential equations of equilibrium and boundary conditions, and

an alternate derivation is obtained more directly from the potential

energy. It is proved that the variational principle must be non-

symmetric and therefore complex eigenvalues X are possible. Thus,

the variational principle is of general applicability since it can

handle crack and notches of any orientation and size as well as

problems of two dissimilar materials.

The variational equation derived in Chapter I is suitable for

solution by numerical techniques. In Chapter II, the finite

element method is applied and the problem is reduced to the form

k(X)x - 0, where x is the column matrix of the nodal values of the

displacements on the unit sphere and k(X) is a banded square matrix,

all coefficients of which are quadratic polynomials in X. The method

of search for the eigenvalue involves a conversion to a non-homoge-

neous system of equations and an iteration scheme. This method has

been used in connection with other problems which lead to equations

of this type [3]. Convergence patterns of the eigenvalues calculated

with increasing number of finite elements is studied carefully and an

extrapolation technique, based on Richardson's hm deferred approach

to the limit [8] is proposed.

Recently, various numerical and analytical solutions related to

this work have been published. Benthem [93 and Kawai, Fagitaui, and

Kamagai [10) obtained different analytical solutions to the problem

of a Mode I crack whose front edge and plane are perpendicular to

the surface. However, there is some question on the convergence of

the method presented by the latter authors, whose solutions disagree

.... ...
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with the results of Benthem as well as the present work. Also,

significant progress has been made in potential theory problems by

Morrison and Lewis [11] and by Keer and Parihar [12], [13]. The former

authors succeeded in obtaining a differential equation with the use

of conical coordinates suited for their problems. Keer and Parihar

obtained a singular intergral equation which is solved numerically.

They extended their solution to some three-dimensional singularities

in the interior of an elastic space which is irreducible to potential

theory [14a]. Keer and Parihar also solved the problem of rigid corner

stamp of small angle on a semi-infinite body for which the solution

is complex [14b].

These solutions provide a valuable check on the present method

of solution and are compared separately in Chapter III, where further

numerical results are presented. These are; a crack whose front edge

and plane are perpendicular to the surface, where it is shown that

Modes II and III are coupled and inseparable at the surface point;

a crack whose front edge is inclined but whose plane remains perpen-

dicular to the surface in all modes; and a crack whose front edge and

plane are inclined in all modes. From energy flux considerations,

these results show that upon propagation the surface point of a crack

in symmetric opening will trail behind its interior, while in anti-

symmetric openings the surface point will move ahead of the crack

interior. It is also shown that for an orthogonal crack in combined

openings, the surface point will propagate in either symmetric mode

or antisymmetric modes, but not in a combination. The numerical

_ _ _ _ _ _ _ _
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results are compared with some recently reported fractographic

measurements provided by Bell and Feeney [15].

Recently, John P. Benthem of Delft, Netherlands privately

communicated (April, 1978) results based on a finite difference

method directly applied to the differential equations of equilib-

rium and boundary conditions. His results, which have not yet

been published, are also compared in Chapter 111. They agree

quite closely with the present solutions.



CHAPTER I

VARIATIONAL EQUATION FOR

THE EIGENSTATES

1.1 Introduction

The most powerful method used to determine near-singularity fields

is that of asymptotic analysis (separation of variables). The method

was first used by Knein [1] (who thanked T. von KArmfun for suggesting

the basic approach) in a problem of plane elasticity, later

solved independently by Williams [2] and Karp and Karal [16]. Recently,

various authors have extended this procedure to three dimensions to

investigate the near-singularity behavior for different problems

[3,11-14).

The present work makes use of the same method in order to formu-

late a general variational equation for cracked or notched linear

elastic bodies. The formulation Ponsists of the classical diffe-

rential equations of equilibrium of linear elasticity and the boundary

conditions associated with the problem. A variational statement is pro-

posed and then reduced to a variational equation applicable to nu-

merical methods.

The variational equation determines the behavior of the material

near the point of singularity. The basic assumption is that near

sudh a point the leading terms of displacement components are

of the form r F(8, ), where X is an unknown constant and F(8,%) an

arbitrary function of the angles e and *.
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1.2 Governing Equations of Elasticity

The problems considered in this work deal with singularities in

a linear elastic material. As a first step, the equations governing

such material are introduced. For reasons which will become clear in

later sections, these equations are written in the spherical coordinate

system (r,8,0) and in terms of their respective displacement components

(u,vw). No dynamic terms or body forces are present since the

solution is confined to small neighborhoods of the singularity.

A.) Equations of equilibrium.

The well known classical differential equations of equilibrium

expressed in terms of dilatation and rotation and transformed to spherical

coordinates, take the form (Ref. 17, pages 141 and 56]:

(+ 2j)r sine 8 -2±{-L (sin 9) 0 3m (1.1a)

B r

C+ 2 1.)sin 0 ,! - (r; sin 9))] (1.1lb)

+ -1 !U) 0

sine "(r r °  (l. lc)
sin BO r 9 b

where X and are the Lame" s constants, A is the cubical dilatation and

wr, we, and w are the components of rotation:

s(r2usin) + -I (rvsin) + 3L(rw)) (1.2a)
r 2 sin9 Br



- £, (rw sin e) - i.(rv)) 1. 2b)
Sr 2sin 0B

0 2 - (rw sin e)3 (1.2c)

27, -1- (rv) - (1.2c)
r r Be

B.) Strain-displacement relations.

When a body is slightly deformed the strain-displacement re-

lationships written in spherical coordinates take the form (Ref. 17,

page 561:

er u.r (1.3a)

1r r

eee v 8 
+  u (1.3b)

1 1 1

e00  rsn W0  w+¥vcote +¥u (l.3c)

e -w cot9e+ V

e¢ r -rr sin e r (13

1 1
er r sin e uO r r (13e)

1 1Vre Vrr + U (.3f)

Cr9 r r
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where, single subscripts on u, v, and w indicate partial derivatives,

and double subscripts on e indicate strains.

C.) Stress-strain relations

When a linear-elastic isotropic homogeneous material is slightly

strained the stress components are linear functions of the strain

components. With the strain components defined by Eqs. (1.3 a-f) the

stress components are [Ref. 17, page 126j:

arr e + Uue rr (1.4a)

0 8 99 e +Pu eBe (l.4b)

CTO e )e (l.4d)

Or= e.r (1.4e)

ar= e rO (l.4f)

where,

e b err + e 8 + e0 (l.4g)



Then, the surface tractions, Ti. on a surface of unit normal, n,

written in index notation, are [Ref. 18, page 64]:

TiM ij Di) jj,. 15

D.) Comment

It is veil known that the material behavior near a crack tip or

a notch apex will be nonlinear. As is also typical of all cases

possessing singularity regions. The stress values will, in fact,

become unbounded at the singularity, although actually the maximum

stress cannot exceed that at which plastic flow takes place. Neverthe-

less, the theory of linear elasticity can adequately describe the

not too close stress field if the plastic region is small. The present

work is limited to such cases.

1.3 The Williams' Method

Consider the mathematical representation of a crack plane inter-

secting a semi-infinite elastic body. Fig. 1.1 shows, as an example,

a crack plane as well as its crack front edge to be normal to the

surface. For illustration purposes, an imaginary body is cut out by

a spherical surface of small radius and centered at the point where

the crack front edge and the surface meet, i.e., point 0, Fig. 1.1.

This normal presentation is used to indicate spherical coordinates,

although the equations of elasticity apply to the entire body.
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A.) Separation of variables.

Consider the point 0, located at the smooth line 00' terminating

at point 0, e.g., Fig. 1.1. Let r,eo be a spherical coordinate sys-

tem centered at point 0, such that ray 0 = 0 coincides with the crack

front edge, line 00'. It will be assumed that in the vicinity of

point 0 the displacement components in the r,Go directions are func-

tions whose dependence on r can be separated from their dependence on

8 and 0, i.e., the separation of variables technique will be applied:

u(r,8,0) = r F(O,¢) (l.6a)

v(r,8,0) - r G(8,0) (1.6b)

w(r,8,0) - rXH(9,0) (l.6c)

with the restriction that the exponent 'A have a limiting value

Re(X) > 4, in order for the strain energy to remain finite near
point O, r + 0. Hence, the objective of this work is to find the

smallest possible value for the exponent X, Re(X) > -4, giving the

gravest state of stress for the vicinity of point 0.

In this sense, point 0 is considered a singular point, line 00'

a singular line, and X the eigenvalue.

The proof for the well-established theorems of uniqueness and

existence for the problems considered here is beyond the scope of
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Fig. 1. 1: Geometry of the crack intersecting a

surface, in spherical coordinates.

0 A
(2rr, o)

e

Fr., e rO

'II

Fig. 1.2: Domain to be solved in

fictitious (e-O)-plane.
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this work. Even for regular finite regions, these theorems are al-

ready "not distinguished by simplicity" [19, page 89). Benthem [9]

who solved analytically one of the problems presented in Chapter III,

writes: "The following theorems, though without proof, will. be con-

sidered to be valid for elastic regions in the form of infinite cones

(semi-infinite bodies).

i.) If an infinite conical region is loaded by stresses which

behave along the generators like r X- and the displacements are pre-

scribed which are zero or behave like r , then there is generally a

solution for the interior stresses of the form a xx 1 f (00), etc.

with the exception of an infinite enumerable set of values for X.

ii.) For every value of X of the infinite enumerable set meant under

(i.), there exists a state of stress given by the above expressions,

whereof the prescribed stresses and displacements are zero. Such

states of stress are called the eigenfunctions of the cone in question.

iii.) The infinite enumerable states of stress (with Re(X) > )

meant in (ii.) are able, in principle, to meet every set of three

boundary conditions at r - constant (a finite cone) provided the

boundary conditions do not require a concentrated force or moment at

the vertex.

These three theorems are, if not proved, generally accepted in

the corresponding two-dimensional analysis of wedges [2,20,21]."

B.) Modified equations of equilibrium.

Substituting the expressions (l.6a-c) into the differential

equations of equilibrium (I. la-c) it was found that the radial co-

L
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ordinate, mainly, r factors out of the equations. The following

equations of equilibrium in the r,8, and 0 directions in terms of the

functions FG, and H and the exponent X result:

Xr (Q+2)(X- l)(F+F+Go +G cot 0e+7j-n Hs 0  [(X +)GFBe]

- cot ((X+I)G-F + - (-- F - -XH 0
9 sin 0 sin 00 0 0

(l.7a)

xe , (Q+2)()Fe +2F e +G9e +G, cot e sn8 G+sine1 H9e

Cos-H) (H- +H. cot9 0 -

sin29 0 sin 0 sin 0 00

+ X[(X+1)G - F@] - 0 (1.7b)

11
X Q+2 X +F0+ o sine o 0 sine8 00

X( I F -- XH) + ( ; cot o9o - 1sinO 0 -O nR

+ Cos9 - 1 G ) =0 (1.7c)
Sne 0sin 9 0

where, subscripts of F,G, and H denote partial derivatives, e.g.,

Fee bF/ 2 , v = Poisson ratio,



Q - 2v/(1-2v) (1.8)

and Xr,Xe % X0 symbolically represent the new modified equations of

equilibrium in the r, e, and 0 directions, respectively.

C.) Modified stress-strain relations.

Substituting Eqs. (1.6a-c) into the expressions for the spherical

stress components, Eqs. (1.4a-f), the following modified stress ex-

presssions result:

Srr 1 arr Q(F + 2F + G + G cot e +-n H0) + 2XF

(1.9a)

Sr9 r_ are = XG - G + Fe (1.9b)

1 1

pee Ta e Q(F + 2F + Go + G cot e + sin H0

+ 2 (Ge + F) (1.9c)

c I Gs0 prX_ 1 '80 sin e G (l.d)

1 1
s 1 1 F + %- H (1.9e)

r rX-1 uro sin8 6
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=- = Q(XF + 2 F + Ge + G cot e + 1 H)

+2( - Ho + G cot 8 + F) (1.9f)

in which p is the elastic shear modulus, and srr,... ,s0 symbolically

represent the stresses.

D.) Comment.

It is interesting to note that one may expect an infinite

enumerable number of real and complex eigenvalues X, i.e., not a con-

tinuous spectrum, for the problem of a semi-infinite homogeneous body.

Furthermore, the real part of each of the complex roots with positive

real part is always greater than the smallest positive real root,

which is also the case for plane problems and is rigorously proved in

Ref. [16]. Therefore, the dominant term that governs the behavior

near point 0, Fig. 1.1, is given by the smallest real root.

Of course, this last observation will not apply to problems of

a crack intersecting two-material interfaces. In such cases all

eigenvalues X are expected to be complex in nature, such as those found

in plane strain elasticity [22,23]. The term of interest will then

be given by the smallest Re(X).

It may be desired to write a generalized Fourier analysis to

include the displacement fields for different eigenvalues which must

result from the solution of an infinite set of equations. However, the

orthogonality properties in three-dimensions might be insufficient to
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determine their participation. This is also the case in plane problems,

as Williams [241] noted: "... let it suffice to point out that the

solutions f(X,cLv) = 0 yield an infinite number of eigenvalues which

may be complex. After ordering these values according to their absolute

magnitudes, one may construct from them an infinite set of eigenfunc-

tions whose elements are non-orthogonal. Furthermore, the completeness

of the set, although intuitively probable, has not been mathematically

established." The present literature seems to lack the proof for the

completeness of the set, even for two dimensional problems.

In any event, let such set intuitively exist for the three

dimensional problem. Then, in the vicinity of point 0, the behavior

of the displacement and stress fields will be determined by the eigen-
function characterized by the smallest eigenvalue; provided the loading

near such point is not critical, see theorem (iii.) page 12.

1.4 Construction of a Variational Equation

A.) Cartesian (@-t)-plane.

Finite element studies are simplified when flat planes, rather than

curved surfaces are used. Expecting that the solution to these problems

will make use of numerical techniques, the domain O'ACO of a unit

sphere from Fig. (1.1) is visualized in a fictitious (6-0)-plane shown

in Fig. (1.2). This approach has been successfully developed in

Ref. [3,page 226].

The singularity ray 00', Fig. (1.1) placed on the pole of its

spherical coordinate system appears in the (e-€)-plane as a straight

line segment at 8 - 0. The surface of the semi-infinite body e - TT/2,
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0 S 0 £ 2rr appears in the (8-0)-plane as a straight line segment

e -r/2, 0 :0C 2TT, etc.

Let then n - (nnn) be the unit normal to the surface of the

body when plotted in the (e-0)-plane, with e and 0 being regarded as

the cartesian coordinates in such a fictitious plane. Thus, n=

(-de/ds,do/ds) where s is the length of a boundary curve, or n /n =
80

-de/do where de and d are increments along such boundary in the 8

and 0 directions, respectively.

B.) Free surface conditions.

It will be assumed that in a sufficiently small neighborhood of

point 0, Fig. (1.1), there are no loads applied at the body surfaces

(surfaces formed by radial rays emanating from point 0), or at the

cracked surfaces.

Indeed, the purpose of this work is to determine all possible

states, called eigenstates which are strictly characterized by the

eigenvalues X. Hence, surface loads may be prescribed at body surfaces

sufficiently remote from point 0, for which the differential equations

of equilibrium but not the boundary conditions will be satisfied.

According to the principle of superposition the actual state of stress

for given boundary conditions can be expressed as a linear combination

of its eigenstates. But, as far as the eigenvalues X are concerned

these boundary conditions are irrelevant, as it is also true in planar

problems, where X = for any loading combination.

Therefore, without loss of-generality, it will be assumed that all

body surfaces are formed by radial rays, and that the boundary conditions
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at the free surfaces in close vicinity of point 0, Fig. (1.1), are:

body surface: 08 r e = 08 0 at eTT/2 (1.10a)

crack plane: C00 =  r = 70 0 at 0,2Tt (1.lOb)

These boundary conditions written as surface tractions p rp 8 , and

p. in the (e-0)-plane take the form:

Pr = sren sin e + Srno = 0 (1. la)

Pq , s n, sin 9 + s80 n0  (l. llb)

po = '90,9 sine +s nO =0 (1. lic)

No boundary conditions are specified at infinity, r - ; only the

local problem of stress singularity at point 0, r - 0, is considered,

and hence, a small domain about point 0 is required.

C.) Variational statement.

The differential equations (l.7a-c) together with the boundary

conditions (1. lla-c) may be combined to form the following variational

statement in the (e-0)-plane:

(X r 6F + X86G + X 6H)sin Odedo - (Pr6F + pe6G + p SH)ds = 0

(1.12)
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in which a is the length of the boundary of the region of the (8,0)-

plane; A is the area of such region; and F,6G, and 6H are arbitrary

continuous functions of e and 0 which have piece-wise continuous
derivatives and satisfy all displacement boundary conditions, if any.

Conversely, from the fact that Eq. (1.2) must hold for any kinematically

admissible functions 6F,6G, and 6H it follows that Eqs. (l.7a-c) and

(1. la-c) must be satisfied. Thus, the variational statement (1.12)

must be equivalent to Eqs. (l.7a-c) and (1. lla-c).

The variational statement presented in Eq. (1.12), is analogous

to the three-dimensional statement one forms in order to obtain the

strain energy [18], except that integration with respect to r has

already been carried out in the unit sphere, since the r dependence can

be factored out, see Eqs. (l.7a-c) and (l.lla-c).

D.) Variational equation.

The variational statement, Eq. (1.12) involves second derivates

of F,G, and H, which are contained in the expressions for XrIX9 , and

X Eqs. (l.7a-c). Since numerical techniques give rise to larger

error for higher order derivatives, it is necessary to transform

Eq. (1.12) to a form which involves no higher than first order de-

rivatives of FGR and of 6F,6G,6H. Also, to be able to apply the

finite element method it is necessary that during this transformation

the boundary integral in Eq. (1.12) be included in the variational

equation; otherwise the natural boundary conditions would not be

satisfied when the finite element method is used.
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Indeed., a transformation by Green's integral theorem [18, page 279)

applied in the Cartesian (9-0)-plane has been found, such that both

objectives are reached simultaneously. The formulation is given in

detail in Appendix A. The resulting variational equation is:

O6+ F& + O 0F 6F + oG + 0 , 6G + %6H

+ %6HO + cO R0H0)sin e d8do = 0 (1.13)

in which -6F6 aF 6 H 0 = aSH/ and the following notations are

made

,0 - [Q(1-x) + 2][(X+2)F + G + G cot +HF S sin 0

-2X(X +2);

4Fo -- (X - I)G +FO; F 0 s [7-n FO + ( -)1;

4)G " (Q+2)[(X+2)F+G,+G cot G+] - 2(G9+F )

-2XF)cot 8 - 2 (Fe G) -X(X + )G -XFe;

G si[(X+2)F+G +G cot+ 13 +2(% +F);
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H- (u cot + -1G)
Go sin 8sin 0'

11
OH R ot 0+r- G,)cot 0 + 2(- FO- H)

(sin8 0+in sin)

+ X(X+l1)H+ -- F 11
sin s

H co + _ + 1 GO;
H8(- H cot e sine 0

11

= (Q[(),+2)F + G + G cot G + sin HO]

+2( -HO + Gcot 0+ F)] 111sin 0

where 2,. C are not partial derivatives of some function (, and

0
are used only for notation.

Thus, the variational statement of the problem is: Functions F,

G, and H are the solution of the problem if and only if they satisfy

Eq. (1.13) for any kinematically admissible variation 6F,6G, and 6H.

Existance of the variational equation which contains no boundary

integral, Eq. (1.13), indicates that natural boundary conditions,

Eqs. (. lla-c), will be automatically fulfilled when the finite element

method is used.
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E.) Comment.

Alternatively, it is possible to derive Eq. (1.13) from Eq. (1.12)

by means of Stokes theorem applied to a unit sphere. It has been

checked that this gives the same result. It has been also checked

that Eq. (1.13) can be transformed back to Eq. (1.12) by means of

Gauss or Stokes theorems. For the sake of brevity these derivations

are not given. Instead, an alternate and independent derivation of

the one just given is derived in the next section.

1.5 Alternative Derivation of the Variational Equation

The basic variational equation, Eq. (1.13) can also be derived

from the principle of strain energy. The derivatioL is more direct

but involves certain steps which were difficult to foresee at the

early stages of this project without recourse to the derivation just

presented.

A.) Principle of minimum potential energy.

The total potential energy stored within a linear elastic body

of volume V and surface S. when no body forces or dynamic terms are

present, is:

U -JV* sn dr~ -is(Tu + T 6v +T w)ds (1.15)

where T rTT are the surface tractions defined in Eq. (1.5), and $ is

the strain energy density:
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[Q(u +-I ve +a u w +-vcot) + 2[u

+ + + v cot + . 2
r r in W r r [U

2 +! ct + 1 v)+(ve u) r ane w + v nu)

.(v ! +!ue)e + (1we .!wcot e+ v)2(2 rv r r r 0i

+) + )2 (1.16)rsine u. r r

in which,

Q = 2v/(l - 2v) (1. 1Ta)

= E/2(1 + v) (1. l'b)

E is the Young's modulus and v the Poisson's ratio characterizing the

linear elastic material.

According to the principle of minimum potential energy, the state

of equilibrium is a state for which the first variation of the total

potential energy vanishes. Thus, consider the displacement variations

6u = ;u (1.18a)

av , v (1. 18b)

I
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aw- (1.18c)

where E is a variable parameter and u,v,w are any chosen displacement

distribution which are sufficiently smooth and satisfy all kinematic

boundary conditions. Then, the state of equilibrium is determined

by the first variation of U, Eq. (1.15):

u o ( uO+ IUr + * u . + "' + *6w )rsin 0 drddo
WO =0 V u r. W

- fs(Tr6u + T &v + T bw)ds = 0 (1.19)

B.) An unorthodox step.

If Eqs. (l.6a-c) were substituted directly into Eq. (1.19) r
2),

would factor out. However, the remaining expression would not be

able to satisfy the equations of equilibrium when Gauss theorem is

applied to Eq. (1.19). To circurivent this critical problem, consider

the terms *ru r' v vvr, and t.r .6w separately from Eq. (1.19).
r r r

These terms can be simplified by Gauss theorem as:

Sv(*Ur ur + *v r6v' 
+ 1w6wr)dv -

SV- r (* 6U) - A + d 6 - v - r

r 
dr 

r 
r

+ L(Ww) 6w ) dV (1.20)
r r
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where d/dr is the total derivative with respect to r.

Applying the Gauss theorem to the sum of the first, third and

fifth terms of Eq. (1.20) and placing them back into Eq. (1.19) gives

6u = "[((*, " -! *' )6u + *u ++ a+ u
d

+(*v " - *v )&v + *v 6Ve + *$v 6.v

d w6

+ S (*u u + * v V+ *wW)nr

- Tr6u + T06v + T 06wds 0 (1.21)

For the particular problems studied here, the surface integral of

Eq. (1.21) vanishes because of the boundary conditions conveyed by

these problems, i.e.

If the surface tractions, Eq. (1.5), are expanded, one obtains

that on the free surfaces near point 0 (see Fig. (1.1) and Eqs. (l.lOa-b)]:

i) arr m *u 1 which is not present on any surface formed by
r

rays emanating from point 0.

ii) arO - v = 0 on the body surface, 9 = TT/2., cr@ is not pre-

send on the crack plane 0 - 0.
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iii) are 0 on the crack plane 0 0, but not present

on the body surface e - Tr/2.

iv) because of the free surface conditions the remaining terms

are also zero and because of (i-iii):

Tr = Cyren + reo n 0 0 (1.22a)

= 0 =eene + ae 0 0 (1.22b)

T 0 = aeon + 0Y = o (1.22c)

which are analogous to the boundary conditions Ziven by Eq. (l.lla-c).

If the expressions (l.6a-c) are now substituted into Eq. (1.21)

one would obtain the s-ame basic variational equation, Eq. (1.13),

after integration with respect to r is performed on the unit sphere

and transformed to the (G-o)-plane.

C.) Lack of symmetry and non-existence of a minimum principle.

It is particularly noteworthy that the integrand of Eq. (1. 13) or

Eq. (1.21) is non-symmetric, and so is the system of linear equations,

Eq. (1.12), which is Eq. (1.13) applied to finite elements, (kij 4 kji ) .

This means that the variational equation cannot be written in the form

of a classical stationary principle [18], 6W = 0 (or minimum principle,

W - min.), which would yield Eq. (1.13). For an elastic material this

might seem surprising. However, a deeper analysis indicates that it

must be so.
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Assume that the integrand of Eq. (1.13) is symmetric with F,G, and

H. Then the discrete eigenvalue problem for X resulting from Eq. (1.13)

would have to be a sysmetric matrix kij kji , Eq. (2.12). This

implies that all roots X would have to be real. But this cannot be

possible because the same variational equation, Eq. (1.13), must hold

also for plane strain problems with two material interfaces, whose

solution are known to exhibit oscillating singularities [22,23] for

which X is complex. Hence, Eq. (1.13) cannot be symmetric. This

contrasts with the analogous potential theory problem for which a

minimum variational principle in the (e-0)-plane does exist [33, with

the consequence that in potential theory the eigenvalue X is always

real.

To prove that the variational equation Eq. (1.13) must be non-

symmetric, it is sufficient to show that it must be so in the special

case of plane elasticity. This can be done by dropping out the

integration over 9 and substituting 0 = i/2 and then setting G = v = 0

in Eq. (1.13). In that case, the most general quadratic functional

involving F(O),H(b),F'(0) - B and H'(0) = 3H/; is:

~2
W - (AF +A 2F + AH 2 + A4H + AsFF' + A6FH

+ ATFH' + AsF'H + A F'H' + AI'Jdo (1.23)

The associated Euler equations [18) are:

a.
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A1 F - A2 F" + A6 H + (§-A 8 )H' - A9H" 0 (1.23a)

A3 H - A4H" + F - (A7-A8)F' - A9F" = 0 (1.23b)

and the corresponding natural boundary conditions at 0 0 or 0 = 0,

are

A2F' + A F + A8H + Ag9I = 0 (1.24a)

A4H' + A7F + A9 F' + AloH = 0 (1.24b)

The actual differential equations for F and H, as obtained by sub-

stituting u = rF(O) and w = rXH(0) into the planar differential

equations of equilibrium in the polar coordinate system (r,O), given

by Karp and Karal [16], have the form

Cl(aoF + a2 F" + aH') = 0 (1.25a)

C2(boH + b2H" + blF') - 0 (1.25b)

and the actual boundary condl ions

C3 (cF' + c2 H) = 0 (1.26a)

C4(c3H' + c4F) = 0 (1.26b)
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where C1.,C2,C 3 , and C4 are aribtrary non-zero constants; and

aoa 1 ,a2 ; ob 1 ,b2 ; c ,c2 ,c3 ,c4 are certain given constants.

Equating the coefficients of all corresponding terms of Eqs. (l.23a-b)

and (l.24a-b) with Eqs. (1.25a-b) and (l.26a-b) one obtains a system of

i linear algebraic equations for A1,... ,A10 , C1 ,... ,C4 . Unknowns

A1 ,... ,Alo can easily be found, which leaves a system of four linear

equations for Cl,... ,C4 which are homogeneous. The determinant of this

equation system was found to equal X. Because X cannot be restricted

to equal zero, it follows that C1 ,... ,C4 cannot be non-zero. Thus,

there is no way to make Eqs. (l.23a-b) and (l.24a-b) equivalent to

Eqs. (l.25a-b) and (l.26a-b), which means that a variational functional

W does not exist for plane problems. So, it cannot exist for the

three-dimensional problem as well.

D.) Comment.

Indeed, the two derivations take somewhat different procedures

from those found from classical variational methods in linear elasticity.

But, it is noteworthy that both derivations complement each other in

the following manner:

a.) The boundary conditions in the (e-0)-plane, Eqs. (l.lla-c)

have to be included in the first derivation (see Appendix A), while

in the second they vanish because of the free stress surfaces, Eqs.

(1.22a-c).

b.) In the first derivation the boundary conditions (mainly, rr

not being present on any surface when surface tractions are considered;
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are 0 on e = TT/2, but not present on 0 0; ar0  0 on 0 - 0, but not

present on 0 - v/2), allows the formation of the (e-O)-plane, other-

wise, the radial component of the unit normal vector, nr1 on the

surfaces would be present in Eq. (l.lla-c). In the second derivation

they come out as a result of the application of Gauss theorem, but

vanish due to the reasons just presented.

c.) The first derivation makes use of the differential equations,

while the second starts from the total potential energy. Both pro-

cedures end with the same variational equation after some intuitive

manipulations.

The lack of symmetry and the non-existance of a minimum principle

for the variational equation corresponds to the fact that both real

and complex eigenvalues must be associated with this variational

equation.

It must be stressed, however, that the entire present formulation

is contingent upon the assumption of the separated form of the eigen-

state (Eq. 1.6, page 10). There exists no proof that the eigenstate

ought to have this form, and that other eigenstates, possibly even not

separated ones, might exist and might be more severe, even though this

seems unlikely.

)S



CHAPTER II

METHOD OF SOLUTION ON A

FINITE ELEMENT GRID

2. 1 Introduction

The variational equation derived in Chapter I and given by Eq. (1.13)

has the tremendeous advantage that the stress boundary conditions are

automatically implied whenever a free surface is present. Therefore,

compared to a finite difference method where free surfaces would require

additional programming, the finite element method is selected to ap-

proach the problem. The program is then written in the Fortran IV

computer language.

The finite elements are chosen as simple four-node quadrilaterals.

The distribution functions for F,G, and H, Eq. (l.6a-c), are considered

bilinear in 8 and 0. The coefficients of the stiffness amatrix,

Eq. (2.9),are calculated by the Gaussian numerical integration tech-

nique using nine integration points, [251.

The variational equation emerges as a generalized non-linear problem

for the eigenvalues. Various methods of numerical solution of this

type of problems have been discussed in detail in Ref. [3]. Method

B from page 230 of Ref. [3] has been selected to search for the root ).

A method of solution when X is complex has also been discussed in

Ref. [61 in connection with other problems. The root of smallest

value, or of smallest Re(X) in the case of complex roots, is of main

practical interest.

31
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An extrapolation technique based on the "deferred approach to

the limit" [8] is proposed for the final value of root X as the

number of grid subdivisions goes to infinity.

The program is general and capable of handling various situations,

such as intersections of crack plane and crack front edge of any

orientation, notches of any orientation and of any opening, etc. The

program will be also capable of handling cases when the exponent X, is

expected to be complex, such as intersections of crack edges with two-

material interfaces. This requires a conversion of the Fortran pro-

gram to complex arithmetic.

2.2 Finite Element Formulation

A.) Treatment of line singularities.

From the three-dimensional singularity point 0, Fig. 1.1, page1,

there usually emanates a stress singularity line, such as the crack

front edge shown as line 00' which coincides with the polar ray

9- 0. The displacements near this line usually behave as (rp)P [3,11]

such that ro represents the distance from the ray e = 0 when e -+ 0.

The exponent p will then represent the exponential behavior for the

displacement field near the singularity line. For the crack front

edge considered here, the values p - 0,i,l,3/2,...-, are possible, and

for notch edges other values of p would apply.

From the theory of the finite element method for plane problems

it is known, for example, that the rate of convergence in the pre-

sence of square-root singularity is only 0(h), while in its absence

the convergence is quadratic, o(h ) h being the element size [261.
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It is conceivable that the functions F, G, and H, Eq. (1.6a-c),

may exhibit gradient singularities at the point where the crack front

edge 00' (a singularity line) emanates from point 0, Fig. 1.1; then

p < 1. Such functions are not suitable for numerical calculations,

and if they are approximated numerically, their accuracy and conver-

gence are adversely affected by the presence of singularities. This

difficulty can be avoided by using singular finite elements near

the singularity line. A more convenient method has been proposed and

used with success in Ref. [3. In this method, the displacements in

the r,e, and 0 directions are expressed as

u(r,8,0) = rnrlPf(8,o) rXpPf(8,o) (2.1a)

v(r,e,O) = rnr Pg(9,0) rXpPg(,0) (2.1b)

w(r,e,0) = rnr Ph(0,0 ) rX pPh(e,0) (2.1c)

in which, p is the exponent for the displacement field near the singu-

larity line; X - n+p; r 1 = rp; p is any chosen smooth continuous

function of e and 0 which is non-zero everywhere except on the singu-

larity line 9 - 0, and which represents the distance measured on a

unit sphere. Possible choices are p = -, p - sin 0, etc. The second

suggestion will be used for numerical calculations, since p = sine

will then represent the exact distance from the ray not only for

8-4 0, but everywhere in the domain. (Note, however, that p = sin 8

cannot be used when the angle 8 rr is part of the domain and where

--- . . .. . . .. . . . ... . , .r , ""F' ' 1 ...
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no line of singularity exists, i.e., at 8 = rr). Thus, it is con-

venient to introduce the notations:

F (9,0) - pp f(@,O) (2.2a)

e(G,O) - pp 0~,0) (2.2b)

H(e,O) - pp h(8,0) (2.2c)

P - (sin e)p (2.2d)

If the field near the singularity line varies as pi when p is set to

j, then functions f,g, and h may be expected to be free of gradient

singularities. This would make the convergence rate quadratic,

O(h 2), [26]. On the other hand, if components of types pl pO, and

possibly other components of different exponents were present in the

solution [9], the rate of convergence would not be quadratic, but

slower than quadratic [26].

When several exponents p are p. sent, the lowest one must be used.

This is shown as follows. Consider that an exponent p , which differs

from the actual value of p, is used. Then, the displacement and stress

fields would behave as:

u i -rX e p F(G,(t) (2.3a)
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-ij Bu/e rXePlF(e,) (2.3b)

for the exact solution, and

~rX ep F (8,0) (2.4a)

aij bu/e .- rXeP 1F*(0,) (2.4b)

for the numerical solution.

Equating the two critical expressions, for the stresses aij'

one obtains:

F (e,,) eP ' p F(9,,) (2.5)

where the function F(e,0) is bounded. If one chooses p > p, function

F(6, ) can obviously become unbounded as 0 - 0; and it cannot be

adequately represented numerically. Thus,

p < p (2.6)

is necessary. The best choice would naturally be to make p equal to

the lowest exponent p present.

Under these considerations, there is still the restriction that

along the crack front edge, 8 0 0, the displacement field must exhibit

the behavior



q  such that q > 0 (2.7)

for the strain energy to remain bounded. Note that q is not the

exponent for the singularity function p.

B.) Displacement distribution in an element.

Choosing a finite element grid in the (0-€)-plane, Fig. 2.1,

the unknown functions F,G, and H may be represented within each finite

element, Fig. 2.1, in the form

M

F(e,¢) u=  XiF i , F = pPfi(e,O) (2.6a)

M
G(6,0) X li  G ci  g g(9,0) (2.3b)

i=l

H(e,X) HL Xi ) H i = PPhi(e,¢) (2.3c)
i=

in which Xi, i 1,2,...,,M, are the nodal values of f(e,6), g(8,0) and

h(8,0); and f'(8,0), gi(9,0) and hi(e,O) are given distribution functions

within the finite elements, usually chosen as polynomials in e and c

[251.

Denoting (8m'm ) as the coordinates of the mth node, the dis-

tribution functions must be chosen such that
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fi(@m, 1) " 13, i , 3M-2 (2.9a)
0,i 3m-2

h (emom) i#m(2.9c)

in order to accomodate three degrees of freedom at each node

m 1,2,... ,M, [25].

The variations of functions F,G, and H and their respective

derivations may now be expressed as

M M M

6F LFJXJS 6F8  IFeb2ni 6F IF 6Xj (2.10~a)
j-1 .-i j=l

M M M

6G 00 G,. (2.10b)

J-1 J.1 J=1
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C.) ;ariational equation in an element.

Su .ituting Eqs. (2.6a-c) and (2.8a-c) in to Eq. (1.14), it

follows that

F " xi*' %e F9 xi'** "" %,$ x1  (2.11)
i 2 i

in which

ii

(Q(1 -X) +2][(X +2)0pf i + (P P)Gg i + PP g + P Pg i cot + sO-- h

- 2X(X +2)ppf i, $ =

i 1.+ P • •ip op  hi

4 " - f[Q(X+2)pPf + (pp)g +o p g +cPg cot 9 + O h
H sine s in9

p •

2[s- h i + p g cot 9 + ppf(2.12)
sin 8 0 (2i12

Finally, substitution of Eqs. (2.7a-c) and (2.11) into variational

equation (1.13) yields a discrete variational equation of the form

M M

I C kijxj)6xi 0 (2.(.3)
j-l i-l

in which k j are stiffness coefficients expressed as follows

k ....
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kF +.5 -Fe F +dG + - G j + PG G  + H
ij A -Fe FO e Go8 0 4-H

8 0

Note that the stiffness matrix [kij] is non-symmetric; i.e., kij J kji

in general. The variational equation (2.12) must hold for any choice

of 6Xi (i = 1,... ,M), and this requires that

M

kI X. - 0 (i = 1,...,M). (2.15)
L j i

i=l

This is a system of M linear homogeneous algebraic equations, re-

presenting an eigenvalue problem. All stiffness coefficients kij , not

just the diagonal ones, depend on singularity exponent X, and so the

eigenvalue problem is of the generalized type. Furthermore, it is

easy to see that kij are polynomials in X, as well as in Poisson ratio

v (when multiplied by 1- 2 v);

kij k ij(X'V). (2.16)

D.) Integration for the stiffness matrix.

The finite elements are chosen as four-node quadrilaterals in the

(8-0)-plane. Three degrees of freedom are placed at each node in order to

L _
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accomodate the displacement field (f,g,h). The basic distribution

shape function f (8,0), g (e,), and hi(e,0) on the original rectangle

are considered as bilinear in e and 0, i.e., a + bG + co + dG *.

Following the conventional methods found in finite element tech-

niques [25,27), the finite element stiffness matrix is obtained by

mapping a general quadrilateral, Fig. 2.1), into a unit square,

Fig. (2.2), given by the transformation

= (2.17)

where

B= (BI,B2 ,B3,B4) (2.18a)

Bi = l+ee1 )(l+ C), i = k,l,m,n (2.18b)

T = (eK,eL,eM,eN) T  (2.18c)

(.OK, L, MN) T (2. 18d)

in which the subscript T denotes a transpose; (0 ,1i) are the corners

(t 1,+ i) of the unit square numbered clockwise beginning at (-i,-I);

(a T11) are the corresponding corner coordinates of the quadrilateral

In retrospect, it appears that much more accurate results could have
been obtained with higher-order finite elements.
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Fig. 2. 1: Finite element grid

in the (e-0)-plane.

Fig. 2.2: Unit square, obtained

I jby mapping a general

(1,-i) I (1)1) element from Fig. 2.1,

using Eq. (2. 17).



element; (G6,¢ ) are the coordinates of a general point within the

unit square; and (0,0) are the coordinates of the corresponding point

on the quadrilateral element.

Carrying out the foregoing transformation of variables e and ¢

into 6 and 0 , the stiffness coefficients given by Eq. (2.14) may be

expressed in the well-known manner [25]:

r r r 1 i * * *
k =j f (,)dedo = J1 J 1 (e,¢ )de d (2.19)

in which T(8,0) is the integrand of Eq. (2.14); and where

**,*) = a (* Y;Y 6 I ve,¢ ) (2.20a)

n e , 0/60 (2.20b)

J being the Jacobian of the transformation given in Eq. (2.16).

The integration of the second term in Eq. (2.18) is carried out

numerically by the Gaussian quadrature formula [251, over nine points

ai of weights Hi:

3 3
kij LZ / Hp q (apaaq)
k = pq (2.21)

p-l q-1
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in which a 3  -a = 0.774596669241493; a2 0 0; H= H= 5/9;

B2=8/9.

A (12 x 12) stiffness matrix is thus obtained for all elements,

which are then incorporated element by element into the final global

stiffness matrix k... A detailed Fortran program is given inUj

Appendix B.

E.) Comment.

The treatment of line singulari.ties described in Section 2.2A

may be thought of in a different light. The representation of the

displacements with the approximate form [u,v,w] = rkpp[f(9,O),g(3),

h(6,0], Eqs. (2.la-c) can be expanded further in the series

[u,v,w] = 7 rkppf(eO ) ,g(@e) ,h(8,0)]
pc0 , , 1,

where f(8,0), g(e,O), h(e,6) and X can be obtained for each value of

p, for a properly chosen function p (such as p = sin 8). Thus, form-

ing a more general represention of the displacement field which is

easily accessible to numerical methods for its solution as shown in

Section 2.2 B-D. Indeed, the above equation is not the most general

expression because there exists the possibility of some other re-

presentation for the displacement which might be intuitively obtained.

However complicated, general, or exact series representation one may

choose, the most interesting and practical term in the proposed series

is that whose stress field dominates over all other possible terms
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present in the complete solution. Since displacements behave like

r and stresses like rX -1 as r4 O, the smallest value for X must be

sought.

2. 3 Methods for the Eigenvalue Search

The problem is to find the smallest eigenvalue X such that

Re(X) > 4. Again, X is limited to Re(X) > -j for the strain energy

to be bounded near the point of singularity. Various methods might

be available for the eigenvalue search connected with Eq. (2.14)

[3,281. Two methods are presented, but only the most efficient one is

chosen to solve the problem.

A.) Quadratic polynomial on the eigenvalue problem.

It is interesting to note that the stiffness coefficients of

k ij (), Eq. (2.13) are quadratic polynomials in X, see Eq. (2.11).

Hence, the matrix k () may be written as
13

[k..] = k = a + bX + cX2  (2.22)

where a, b, and c are real square matrices independent of X and of size

(M x M), M being the number of nodes. So, Eq. (2.14), k X = o, takes

the form :

aX+X b X +X 2 c X 0 (2.23)

where X is the column matrix of X This expression is a nonsymmetric

quadratic eigenvalue problem on X

-- A
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In an iterative eigenvalue searchkij would have to be repeatedly

evaluated for various X-values. Obviously, Eq. (2.22) allows reduction

in the number of computations needed to obtain ki. , since it sufficies

to determine three matrices of sizes (M x M) independent of X, and

then evaluate k given X till Eq. (2.14) is satisfied.

Furthermore, it is useful to observe that complex eigenvalues of

Eq. (2.14) or (2.22) can occur only in conjugate pairs, because

i(XX= -k(7% .i - k() 1 (2.24)

so that if k(X)X - 0, then also

-()3 = 0 (2.25)

where a superposed bar denotes a complex conjugate.

B.) Conversion to non-homogeneous system of equations.
The method for the eigenvalue search described in this section

has been used with success in connection with other problems which lead

to the equations of the type of Eq. (2.14), for the real case in

Ref. [3,4] and for the complex case [6]. The method used herein will

be explained in complex arithmetic which can easily be converted to

real arithmetic by ignoring all the imaginary components.

Eq. (2.14) represents a large system of M homogeneous linear

algebraic equations for the values X. which belong to the nodes

j = 1,2,...,M.
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Skij(xv)X = 0, 1 1,2,...,M. (2.26)
i=2.

For a given value of Poisson's ratio v, the root X and the correspond-

ing eigenvector Xn(n = 1,2,... ,M), is evaluated by the following

technique:

First, the matrix k ij (X,v) is calculated for one chosen value of

XR + ix1, where XR 
= Re(X).and X, = Im(X). Then, the equation

belonging to one of the unknowns Xn, e.g., for the mth term Xm, at the

surface node, is deleted from the matrix kij and stored separately.

This equation is then replaced by the equation Xm = (1,I) which makes

the equation system non-homogeneous.

This matrix, for the new system of equations, is non-singular,

because X is a simple root when Im(X) A 0. Thus, all X n,(n 1,2,... ,M)

can be solved by converting standard library subroutines for banded

real matrices to complex arithmetic, see Appendix C. In the case of

real roots, the new matrix is normally non-singular.

Once the unknowns, Xn, are solved, the right-hand side, O %, of

the original m-th equation is evaluated. The quantity 0 may be re-

garded as a function of XR and Xi, i.e.:

M
k X w Qm(R,X.) (2.27)

L mJ j

mo
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After a second quantity of Qm is evaluated for another value of X,

chosen at the beginning of this procedure, the iterative "regula

falsi" method is applied to XR and XI separately, in order to find

the value of X such that Q will be zero, ie., Re(Qm) = Im(Q%) = 0,

thus, satisfying Eq. (2.14). Computationally, Eq. (2.14) will

obviously not be satisfied exactly. In the program the iterative

"regula falsi" method is used until the difference of two consecutive

values of X is of order 0(10 -5), and to whose last value yielded

IQMI - 0(10 )6,

Accuracy and convergence can be improved when the m-th equation
M

is chosen such chats Ik jI is the largest of all Ikii i

[6]. The search for this value was not necessary here since all of

them were found to be of the same order. Nonetheless, the convergence

of the iteration method is sometimes quite slow. To obtain a good

initial guess, X must be scanned in small steps, usually of about 0.05

and 0.005 for the real and imaginary parts of X, respectively.

Fig. (5.6) gives an indication of the sharply varying slope of Qm v.s.

X for an example whose solution is real. Thus, much care is required

to avoid missing the smallest root and to keep the computational time

to a minimum.

The root search subroutine can be generalized further for various

cases which will be used in later chapters. Note that the search

for root X may be geometrically interpreted as the intersection of the

line of solution for a constant number of finite elements, N, with

the vertical line v - constant, see Eq. (2.15) and Fig. (3.5). For

*The difference in initial guesses for X is in the ordir 0(h- 2 ) and their
corresponding % values usually range in the order O(h ) to 0(h4).
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regions when this curve, X v.s. v, turns sharply upwards (or downwards),

the subroutine converges poorly or not at all, i.e., either the inter-

sections occur at very small angles or no intersection seems to exist.

To circumvent this difficulty, Eq. (2. 16) may be considered as an

eigenvalue problem for v at a fixed X. Then, the solution represents

an intersection of the line of contant N with the horizontal line

- constant.

Similarly, when the problem is to find orientation angles 8 and y

for their crack front edges and planes, or notches with opening a. and

orientation 8 and y, for which the values of X and v are desired, as

fixed then k will be a function of these angles:

ij

kij = ij(x,\; CL,,) (2.28)

and Eq. (2.27) may be considered as an eigenvalue problem for eL,8,

and y.

In the case of complex roots the search method is more complicated

than that for the real roots. First, one must scan a region of com-

plex X - (X RI). At each point the quantity [Re(Q) + Im(QM)2-1

is computed and a plot is constructed. Once a peak is noticed in the

plot, then the "regula falsi" method is performed in the following

manner:

Two values for XR' chosen inside the region of the peak, are

fixed. For each of the two XR' XI is iterated with respect

to Im(%m) and when it converges Re(Qm) is stored. The third

R value is iterated with respect to the two previous Re(Qm).
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Again, it is fixed and X is iterated untill X converges.

And so on. Once XR has converged, a final iteration is

performed on X V Thus, a complex root is approximately

computed.

C.) Eigenvalue convergence.

Interesting results can be obtained when the convergence rate of

the numerical eigenvalues, computed for different number of grid sub-

divisions, is studied carefully. Indeed, convergence studies can at

times be questionable, especially when sophisticated manipulations

are needed to obtain numerical values. However, its use is justified

when a convergence method constantly agrees with exact, or nearly

exact, solutions to the same problem based on a completely independent

approach.

For example, it is well known that the ordinary finite element

method exhibits quadratic convergence (or it has an error of the order

O(h2 )), provided that there are no singularities within the domain

[26]. That is, functions f, g, and h and their gradients are non-

singular, p = , see Section (11-2). So, the convergence of the

elgenvalue X should also be quadratic. When singularities are pre-

sent, e.g., p - 0, then the convergence is less than quadratic and

the error E is of the order O(hm), where h is the size of the element

and m the convergence rate. Then, noting that (-denoting proportionality)

2h 1/N (2.29)

and

- ---... .. .
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E - k/N (2.30)

where N is the number of finite elements and k a constant, possibly

dependent on Q

Q = 2v/(l-2v) (2.31)

These relations should hold accurately when N is sufficiently large.

Hence,

E = XN - Xe ~w k/N (2.32)

where, XN is the computed value using N finite elements and ke the

exact solution. Then, Eq. (2.30) can be written as

log E - log k + m log /-N (2.33)

If a quadratic convergence is present, expression (2.31) must

exhibit a straight line of slope m - 2 for sufficiently large N when

log E is plotted versus log IN. Otherwise, Iml < 2. This observation

can be used to advantage in extrapolating the convergence pattern

and estimating the results for N - m, or h - 0.

D.) An extrapolation technique.

Many extrapolation techniques exist in the literature, most

referring to particular problems [23,24 ] based on the hm extrapolation.
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This idea was first suggested by Richardson [29] and a fuller treat-

ment was later given by Richardson and Grant [8]. The latter deviced

an extrapolation formula, better known as the "deferred approach to

the limit", in which h represents the average size of the interval

divisions. This method may be extended here to suit the problems

in question.

If X, is the solution at the end of an interval obtained by using

h - hI . 1//N1 and X2 is the solution at the end of the same interval

using the same formula but with h - h2  1//N, the extrapolation

X mlh h (2-34)extrap. =m

gives an improved approximation over the linear extrapolation (m = 1)

provided that:

i.) the total round-off error is negligible

ii.) both h are small enough for the error to be proportional

to hm, i.e. E . O(hm).

When N is too large, there is a dangar that round-off error will build-

up to substantial proportions. Thus far, this error has not yet been

detected, even with largest system of equations used here: 975 simultane-

ous equations belonging to 288 elements. Hence, condition (i.) may be

considered to hold for the large computers available today.
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The convergence rate m, in condition Cii.) is a seldomly known

value, yet, it is of most importance for extrapolation studies. Then,

the question arises for its value which would apply to these problems.

Its assessment will now be analyzed.

Extending the Richardson's hm extrapolation formula, Eq. (2.32),

which is based on the two conditions mentioned earlier, the convergence

pattern can be exploited further to greatly improve the accuracy of

the results with the additional provision that the grids for various

subdivisions are all similar and generated according to the same rule

imposed at the beginning of the problem. Let XN be the root obtained

when N number of finite elements is used. The following extrapolation

technique is proposed.

Plot the values of root X N versus IO00/Nn/2 for various chosen

values of n. The convergence rate m - n which gives the best straight-

line fit, as indicated by the least sum of absolute deviations, is

selected. Then, a regression line is passed to obtain the extra-

polated value as N -* -, or h - 0.

Obviously, this technique must work if the assumption that the

error is of the order O(hm) - O(N~m/2) holds. Note that all eigenvalues

XN are included, not just two, as in Eq. (2.32). Hence, the value m,

obtained in such manner, is the effective convergence rate.

This technique can be interpreted in the following manner:

Let Xi,i - 1,2,... ,K, be the roots obtained by using the finite

element method, e.g., N - 128,72,32,18; then i - 1,2,3,4. Let
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= h ooo1 ln/2 (2.35)

be the X-coordinate of the X i-root for a convergence rate n, where n

can vary continuously. Construct a rectangular coordinate system

X- x, as shown in Fig. 3.4. The data points in Fig. 3. 4 are from

a typical example to be studied in the next chapter.

The best-fit straight-line X - a + bx through the data points

is determined by the minimum value of the sum of squares of the

diviations 6i:

K K

S(n) -- (6i)2  [X [i - a(n) - b(n)Xi(n)]  (2.36)
i-i i-i

where a - a(n) and b - b(n) are the coefficients of the straight-line.

Henceforth, the subscript i will be dropped because the sunmmations are

understood to be over all K data points. For S to be a minimum for

a particular n-value:

_s _ 0 (2.37)

which yields

b K " (2.3 8 a)

K•x L, . ' .. . , L . .. ., "" -. . .
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a X x) (2.38b)
K X

The optimum value of n, for which S(n) is a total minimum is obtained

by

S(U) -0, at n =m (2.39)

from which m, the effective convergence rate, is intuitively chosen.

Clearly, the extrapolated value will be a(m). The proofs that:

E=(hm) - 0 S(n) - 0, at n -r (2.4o)

or vice versa

-- S(n) - 0, at n - m = E = O(hm) (2.41)n

are beyond the scope of this work, if such theorem does indeed exist.

Unfortunately, the literature on this technique is not available.

Its servicability can only be supported if it concurs with known

solutions, as it will be shown to be true in the succeeding chapter.

E.) Coment.

The application or a regular finite element method to the vari-

ational equation, Eq. (1. 14), is straight-forward, with the only im-

plication being computational errors. The technique used to search
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for the smallest complex eigenvalue has been proved to work success-

fully in (6]. An extrapolation technique based on convergence

patterns is proposed. A rigorous proof that such technique must work

is not given.



CHAPTER III

NUMERICAL SOLUTIONS

3. 1 Introduction

The finite element method developed on the (0-0)-plane and

applied to the variational equation derived onthe unit sphere is of

general applicability. This method can now be used to obtain the

solution for a crack whose front edge and plane inclination angles are

of arbitrary values, see Fig. 3.18, page 103; a notch of arbitrary

opening and orientation, see Fig. 3.26, page 101, and for the solution

of a crack or notch with two dissimilar materials.

The analytical solution for a Mode I crack whose front edge and

plane are normal to the surface, see Fig. 3.1, page 68, has been ob-

tained by Benthem [9] and Kawai, Fugitaui, and Kumagai [101. Signi-

ficant advances, which led to highly accurate analytical solutions,

have recently been made in potential theory problems by Morrison and

Lewis (11] and by Keer and Parihar [12]. The former authors succeeded

in obtaining a tractable differential! equation by virtue of using

special coordinates (conical coordinates) suited for the particular

problem of charge singularities. Keer and Parihar's method. utilizing

spherical coordinates, appears to have broader application and involves

the use of Green's functions to formulate the problem in terms of a

singular integral. The crucial step is to differentiate this integral

equation to get rid of a constant right-hand side and obtain an eigen-

value problem, which is then solved numerically by Erdogan and Gupta's

56
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method, and thus obtaining the solution for crack corner in an

infinite elastic space in Mode I opening; also obtained numerically by

Bazant [3], who used finite difference methods as an approach to the

problem. Parihar and Keer have extended their very effective,

original and elegant method to the same problem for Modes II and III

singularities which is irreducible to potential theory [14a]. They have

also obtained the solution for shear on a rigid corner stamp on a semi-

infinite elastic body for which the solution is complex [14b]. These

solutions and those of plane problems provide valuable check cases

for the accuracy and correctness of the present method. In a more

recent private comunication,* Benthem has obtained numerical solutions

not yet published of an arbitrary crack using finite difference methods

applied to the differential equations of equilibrium. His solutions

agree reasonably well with the results to be presented.

In the progress of this work certain limitations to the finite

element method have been found. The obvious one is that for which the

Poisson ratio is close to 0.5 and the term Q = 2v/l-2v increases with-

out bounds, and for which it was noted that Modes II and III are more

susceptible than Mode I. Also, when the angle of inclination 8 for the

crack front edge is cloce to 0 or TT, see Figs. 3.10 and 3.11, page 84,

numerical inaccuracies were seen; because when these domains are mapped

in the (9-0)-plane they are distorted considerably and one would need

to increase the number of finite elements until the domains are rea-

sonably represented. A final limitation is that whenever the eigen-

value is real and larger than unity in the interation routine, X will

April, 1978, Delft, Netherlands
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converge to exactly unity, the reason being that rotational effects

will dominate, i.e., X - 1.

3.2 Check Cases

As a first step, the program is checked for its correctness and

accuracy. Various simple cases of known solution, usually given in

terms of displacements in the Cartesian coordinate system, are trans-

formed to the spherical coordinate system [7, page 37]. This is done

by letting the y-axis coincide with the crack plane 0 - 0, TT at e -T T/2;

the z-axis coincide with the crack front edge, e - 0; and the x-axis

being perpendicular to both, y- and z-axis, i.e., at 0 - t I/2,

e -Tr/2, see Fig. (3- 1) page 68. Then, the following transformation

is allowed:

u i sine sinn mi cos 0 cos u

v = cos 8 sin 0 cos e cos 0 -sin B , u (3-1)
y

w cos 0 -sinO 0 U

where (ux u yIU) is the Cartesian displacement field of the known

solution.

The spherical displacement field, (u,v,w), in the domain 0 ! 0

r/2, 0 C . i T is checked for i) continuity, ii) existence of at most

first order derivatives, and iii) boundary condition requirements.

Then, the field is substituted into the program by calculating

the displacements at each nodal point, i.e., obtaining Xi, Eq. (2.14).
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The stiffness matrix kij is subsequently computed; and Eq. (2.14) must

be approximately satisfied. As an error indicator, the right-hand

sides for all i were compared to the sum of their absolute terms as

indicated by the condition

M M

k kijx'I/ fkijxj < 104  (3.2)
jul iul

at all nodal points i, i = 1,2,... ,M; for a mesh of only 32 elements.

The elementary solutions for the various special cases considered here

were first analyzed for their dependence on X and pP, Eqs. (2.la-c),

in order to obtain the X and p values.

A.) Rigid body rotations.

The three body rotations allowed imply that X 1 1 and p = 0. For

example, the rotation about the z-axis, e - 0, implies that

u - v -0, w a r sin 8 (3.3)

for which X - 1, p - 0, H(e,O) - sin 9; and F(0,0) - G(e,o) - 0. Note

that it is also possible to have X - 1, p - 1, and h(8,4) - 1 for this

particular example. Table 3.1 shows the print-out of Eqs. (2.14) and

(3.2) using Eq. (3.3).

B.) Homogeneous strain field.

The only homogeneous stress field that will satisfy the free

surface conditions is that which belongs to 1yy (or constant), i.e.,
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in the y-axis direction (8 - r/2, ¢ 0). Ignoring rigid body dis-

placements already considered in Section A, this field yields:

(u xUy0Uz) - -xyVz

Then, after using the transformation forumla, Eq. (3.2), the

spherical displacement field is:

u(r,8,0) = r[a2 2-v s2) - v Cos 2  (3.5a)

.2 2v(r,e,0) - r[sin 8 cos 8(co 0- V sin 0 + v)) (3.5b)

w(r,e,0) = r[-sin e sin 0 cos 0(l + v)] (3.5c)

for which X - 1 and p - 0. The functions F(6,0), G(0,0) and H(G,0)

would then be the expressions inside the brackets of u,v, and w, re-

spectively. If Poisson's ratio v 0, then 1 - I and p 1 can be

considered, and

f(9,0) = sin 8 cos2¢ (3.6a)

g(a,-) = Cos cos20 (3.6b)

h(6, ) I -sin cos 0 (3.6c)
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would apply. Table 3.2 shows the print-out of Eqs. (2.14) and (3.2)

using Eqs. (3.6a-c).

C.) Plane-strain solutions.

The solutions for near-tip plane-strain fields may be found in

references ( 3 for opening I mode, shear mode II, and antiplane

mode III. Obviously the antiplane mode field cannot satisfy all stress

boundary conditions at the surface e - r/2, or the nodes which belong

to the body surface in Eq. (2.114). In this case only the fulfillment

of the equilibrium equations for the interior nodes was checked. As

an example, the displacement field for mode I opening is [12]:

u - Cfr [sin G(A + B)] (3.7a)

v - C/r [cos e(A + B)] (3.7b)

w - C/'r [A-B] (3.7c)

1 2

where C - -KI/2 (1l+vl)/El; Et E /(1.v) V V/(1-V)

A - [2(1-V1 ) - cos2 a] sin a sin 0

(3.8)

B - [l - 2v I + sin2a] cos cLasin 0

-L - )/2
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Then, X - and p - 0. These values also hold for the two remaining

modes and need not be discussed further. A print-out of Eqs. (2.14)

and (3.2) is shown in Table 3.3 using Eqs. (3.Ta-b) and (3.8).

D.) Checks on smaller domains.

For the sake of accuracy for the method, cases B and C were

rerun for domains of small notches, but still containing 32 elements.

Table 3-. shows the print-out for the example given in Section C for

a notch of boundaries 0 i 0 C n/16, 15rT/16 0 9 TT. As expected,

the accuracy increases inside the domain but not at the boundaries,

since the boundaries of the actual problem are not those of a notch.

E.) Coumnent.

Note that, if Eq. (2.14) is satisfied computationally, i.e.,

its righthand sides are small, then alternatively, the variational

equation, Eq. (1.13), must be satisfied exactly. In all check cases

studied above substitution of Eqs. (3.7a-c), (3.5a-c), and (3-3) into

Eq. (1.13) yielded zero after long hand algebraic manipulations

3.3 Crack Plane and Front Edge Normal to Surface

The finite element computer progra& derived in Chapter II and

outlined in Appendix B is now applied. The first problem is that of

a crack whose plane and front edge are normal to the halfspace, as

depicted in Fig. 3.1. Recently, Benthem [93 and Kawai, Fujitani, and

Kumagai [10,30] presented analytical solutions for this problem but

only for Mode I opening. A comparison of their results with the ones

obtained in this chapter is made.
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A.) Synmetric opening, Mode I; p-4.

To analyze the field near the terminal point 0, Fig. 3.1, in

Mode I opening for the problem just presented it is sufficient to

consider only half the domain, because there exists symmetry with

respect to Tr. The new domain will continue to be rectangular in

the (6-0)-plane with boundaries 0 :9 0 -T/2, 0 & 0 ! 1T, Fig. 3.2, or,

as indicated by the domain enclosed by the slashed lines in Fig. 3.1.

The stress boundary conditions on the crack surface (0 O) and on the

half-space surface (8 -rr/2) are automatically satisfied by the finite

element method. The boundary conditions of 9 -O (the pole, top side

of the (6-0)-doman in Fig..3.2), are irrelevant and none have been

Imposed.

The boundary conditions on the symmetry plane (0 -r) must properly

reflect the symmetries of displacements and stresses with respect to

O -t. Therefore, for the symmetric crack (Mode I) opening, one must

impose for all nodes at -IT the condition w = 0, i.e., h - 0, Eqs. (1.6c)

and (2.1c). The symmetry conditions for stresses, namely aor = a 0 = 0,

will be also be automatically satisfied by the finite element method as

natural boundary conditions. Thus, these considerations ensure a

statically determinate support for the body and at the same time properly

reflect the symnetry properties.

From the work previously done on potential-related problems [31, it

was expected that the displacement field should exhibit a behavior of

the form
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C L,... -- .-

Fig. 3.1: orthogonal crack. spherical coordinate

system at termination of crack front edge

OQ'at body surface, pointO. (The unit

sphere is shownr only to visualize the co-

ordinate; the body is semi-infinite).

0 it

Fig. 3.2: Finite element grids used for orthogonal

crack. Domain O'ACO' from Fig. 3.1

visualized in the (e-o)-plane.



69

v/N 18 32 72 128 Benthem [9]

0.0 0.565263 0.537891 0.517198 0.50973 0.50

0.15 0.648844 0.611861 0.582320 0.570591 0.5164

0.30 o.75672 0.70o4681 o.662787 0.645832 0.5477

0.40 no couver. 0.826392 0.756209 0.721745 0.5868

X/N 18 32 72 128

0.905 0.390605 o.423676 o.453383 o.466796

Table 3.5: Numerical results. Eigenvalues for

orthogonal crack using N finite elements;

Mode I, p =
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u(r,8,O) -r~sinpO F (e,O) (3.8b)

In Ref. [3], p was suitably taken as p - . This choice was motivated

by the fact that the term pp, Eq. (3.86) is dominant at finite r and as

e-+o. Unfortunately, the literature related to the method of solution

used here to treat elasticity problems is non-existent. Therefore,

expecting similar behaviors, p was chosen to be p as a first at-

tempt to solve the problem.

Symmetric opening is acquired in the program by forcing any of the

nodes belonging to the crack surface ( 0 0) in the 0-direction.

Table 3.5 gives the numerical results of X for various values of

Poisson'a ratio v. For values of v which exceed 0.4, the root search

surbroutine converged very poorly, or not at all. For these cases, X

was fixed and v was considered the root, as explained in Section 2.3 B.

Some results are given at the bottom of Table 3.5. However, when v

becomes very close to 0.5, the present formulation breaks down, because

the value Q - 2/(l - 2v), Eq. (1.8), increases without bounds. A

special program would have to be written for v close to 0.5 and for

incompressible materials, v = 0.5.

Note that for the case of Poison's ratio 0 0 the computed value

of the root for the finest grid used (128 elements, 459 simultaneous

equations), was 0.50973. The exact solution is known to be 0.5 [9].

Thus, the computed value is still within 1.9% error. Closer estimates

for the exact solution with these values, Table 3.5, can be gotten

with the extrapolation technique explained in Section 2-C. Eq. (2-33)

MOI MI
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should hold for m - -2, since p = will not introduce gradient singu-

larity near 8 -+ 0, [26]. The plot of log E versus log/N, Eq. (2.33),

is shown in Fig. 3.3 for the case V-0, where the exact solution is

known, Xe " 0.5. Indeed, the plot is a straight line with a slope

indicating m = -2.0. Thus, for v = 0, the present formulation, p =

seems to follow a systematic pattern of quadratic convergence.

This observation can be used to advantage in extrapolating the

convergence pattern and estimating the results for N -o -, h -0 0; even

for v > 0, where no error analysis can be made, since no exact solution

is available. Thus, a plot of X versus 1000/N, i.e., m = 2, is

constructed in Fig. 3.4. Again, for quadratic convergence these plots

should be straight lines for sufficiently large N. According to

Fig. 3.4 this seems indeed to be true. Therefore, regrassion lines

(straight lines) are extended to obtain estimates of the values as

N-. =, i.e., estimates of the exact solution, as shown in Fig. 3.4.

The extrapolated values, along with the numerical results of Table 3.4.,

are shown in Fig. 3.5 and are compared with Benthem's solution [9].

Note, however, that for the case v = 0, the extrapolation point, N - ,

falls on 0.5 + 0.002, X - 0.5 being the exact solution.

The fact that estimates, N -* w, significantly deviate from

Benthem's results [9], as shown in Fig. 3.5, can be attributed to the

case p -4: i.) The solution presents eigenvalues which are in the order

of those obtained by Benthem, but unfortunately for the case p = , the

exact or numerical solution is unlikely to be available for comparison

purposes. ii.) In light of the results to be presented in the sub-

sequent section, this solution is correct within 1%. iii.) From (ii.),



72

-1.2 N= 18
G Numerical results for a

grid of N finite elements

-1.1.= 32 V=O

log(,- !) =const.-m logAN-

., - = 2.01
q uadra tic

0 convergence L

N=72
-1.8 i

-2.0 N = 128

-0.6 -0.7 -0.8 -0.9 -1.0

log T/-

Fig. 3.3: Determination of the rate of convergence

with increasing number of elements. Use

of Eq. (2.33); Mode 1, p- .
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EXTRAPOLATION OF
NUMERICAL RESULTS error -. cons t./ N
TO N -,co

0.9 (N =numner of finite elements)

C-4,

0 .7..... .

- Benttem's slto

0.30
0.15 N-

0.5
10 20 30 'J0 so

1000/N

Fig. 3.J4: Extrapolation of numerical results to

infinite number of elements, using

Eq. (2.31); Mode 1, p
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l.a

exact va±ue of X
(after Benthem).

0.9

98ooNumerical results for aI /
grid of N finite elements •

0. / 7 ,'//

/ / ,/
XN 181 1y0 3 2y.7 1

0.7 - a

./00 /' ...01. /

* -extrapolation

,,," Ow.l for N - c

0.5
0.0 0.1 0.2 0.3 0.4 0.5

V

Fig. 3.5: Singularity exponent X for various

values of Poisson ratio; Mode I,

p=-
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this solution assures the existence of an infinite enumerable eigen-

values for the problem, e.g., other solutions can be gotten for

p - O,4, ,... ,. Hence, Fig. 3.5, is not a complete solution, unless

V -0.

B.) Symnetric opening, Mode I, p - 0.

The author is obliged to John P. Benthem, Professor at Delft

University of Technology, for clarifying, in a private communication,

the value for p from the implications of his analytical solution.

The choice p - j in previous computations, Fig. 3.5, was in-

appropriate for the complete solution, because a restriction is pre-

scribed to the displacements, similar to that of a generalized Fourier

series which would represent the displacements, thus, limiting their

complete and natural dependence on the angle 9 for which the smallest

eigenvalue should exist. Let (rp) p, Eqs. (2.la-c) be the tecm with

the lowest exponent in the field near the singularity line, (crack front

edge p 0 8 o). Indeed, p = is the lowest p corresponding to the

deformed states for crack front singularity, but where the displacement

field behaves like:

u'v'w 9 AO 0 , 0 < r . (3.9)

and stresses (displacement gradients), like:

a'e "8 ; 9- o , 0<r<-. (3.10)
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However, in the neighborhood of the singularity line (crack front

edge, 0- 0) one may have values of p - 0, ik, 1, ... etc., as was

proven in Section 2.2A, Eq. (2.6). In otherwords, Eq. (3.9) does

not mean that there are no displacement fields starting with the

stronger exponent p - 0,

u0vw s e -o, O< r< (3.11)

The exponent p - 0 does not give rise to stresses

cY.e ; e-o, 0<r<-. (3.12)

In otherwords, the term (p)P does not cause any singulatiry as p -* 0,

or e * 0, at a finite fixed r. However, this may cause functions

F(eO), and H(0,0) to have gradient singularity of the type Gp+q, or

qeq, as r -* 0, where q > -I. This singularity would be more severe

than the singularaty 8 associated with the planar near tip field.

That terms of 8 q, q > -1 as r -+ o should indeed be present is indicated

by Benthem's solution [9]. This will still satisfy the restriction

that along the crack front edge the strain energy must remain finite.,

i.e., the behavior 8q of the stresses along the crack front edge be

such that q > -1.

Therefore, all finite element sclutions were rerun with the

exponent p - 0. The numerical results are given in Table 3.6, and are

compared with Benthem's results. Again, as expected, the error de-
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creases considerably by using larger number of elements. Also, the

more Poisson's ratio v deviates from zero the larger the error, due

to the value of Q - 2/(1 - 2V), Eq. (l.17a). Obviously, Q will induce

numerical inaccuracies which are well known to occur in all numerical

methods of this type.

It was fortunate that for the results obtained in the previous

section, p - J, the convergence rate m was known "a priori' and

proved grafically to be quadratic by employing Eq. (2.31). For the

case p = 0, for which

f(8,0) - F(8,0), g(8,0) - G(0,0), h(U,0) = H(8,0) (3.13)

while p = is also present, the convergence rate must be less than

quadratic. But, since the exact, or nearly exact solution is available

[9], Eq. (2.31) can again be used grafically to find the value of m,

as shown in Fig. 3.6. The extrapolation points (or regression lines

N ), are shown in Fig. 3-7. These points are then compared with

Benthem's solution in Fig. 3.8, showing both solution coinciding with

each other within a 0.002 deviation.

Because the gradient of F(e, ), G(eO) and H(8, ) might tend to

infinity as e - 0, it seems appropriate to refine the grid step AG as

6 decreases. Irregular rectangular net works in which A was con-

stant and in which AS was refined so as to keep AS roughly equal

(sin 86)6, have been tried, using same numbers of subdivisions in

both 8 and * directions, as shown in Fig. 3.9. Although the

numerical results for the same maximum size element (regular grids)
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CONVERGENCE RATE

0.8 N = number of elements

X exact solution (Benthem)
- (p= 0)

1.0 k/,%%,2

0 o(X-) -m log FN const.
NN32

1.2 3.2 - .1..8

000 " 0
1 .11 I

300 N:72 m:1.9

Nz128 m~ 1.75
200Q V =)0.3

1.6 N:72
100"

0
0.O 0.2 0.4 0.6

1.8 , I ,N:128
0.6 0.7 0.8 0.9 1.0

Fig. 3-.6: Determination of the rate of convergence with

increasing number of elements. Use of Eq. (2.3).

Insert: Search of eigenvalue using Eq. (2.26).

Mode I, p - 0.
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a) Numerical Results for Various Grids
MODE I (Symmetric opening)

0.9 0

0.8 N= number of finite elements
0.8 ( (0)/

0.7- N=18/ '

0.6~X 0U,5477 4

X= -:.5

-- ....---- N ~ coincides withi
* ~ Bentnem's solution

0.00. 0.2 0.3 0.I4 0.5
V

Fig. 3.8: Numerical results for orthogonal crack.

Mode I. p 0.
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were better than those for the refined (irregular grids),

the extrapolated values for the refined grids were no better than

those for uniform subdivisions. So. non-uniform subdivisions of the

meridians would be ineffective.

Recently, Kawai, Fujitani, and Kumagai [10] also presented

analytical solutions for the same problem (orthogonal crack). They

obtain three roots for all Poison ratios which disagree with Benthem

[9) as well as the present work. For example, the smallest root [10]

for v - 0.3 is approximately ) 0.3. The insert of Fig. 3.6 shows

the value of Q, which must be zero in the search of the eigenvalue,

Eq. (2.26). The curve that Q versus ), traces is smooth and continuous

Therefore, no eigenvalue near X - 0.3 for Q - 0 could have been

missed.

Furthermore, the program was checked against the analytical and

numerical solutions for a sharp corner of angle 2 on the crack front

edge of a planar crack whose complement is the wedge-shaped punch

of angle 28 within an infinite elastic solid, see Fig. 3.10. The

solution for this symmetric opening (Mode I) of such a crack was

given in [3], where a finite difference solution was based

on a reduction to potential theory. Very accurate solutions, by

means of singular integral equations, have recently been obtained

by Keer and Parihar [13). Both solutions [3,13] have found that for

symnetric opening, the eigenvalue is independent of Poison ratio

for a fixed angle 2C.
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A 
0

Fig. 3. 10: Crack corner in an infinite elastic

space. (The unit sphere is not the

body surface; it is used to visualize

the spherical coordinates the body

is infinite. )

0 "7T/2 7r

Fig. 3.11: Finite element grid used for the crack

corner in an infinite elastic space.

Domain 0'ACO' from Fig. 3. 10 visualized

in the (e-€)-plane.
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Because of symmetry abrat - IT and e " 8, one needs only to

consider one quarter of the unit sphere as shown by the dashed lines

of Fig. 3.10. The bottom side of the domain, Ob - a/2, is a great

circle around the unit sphere, which in the (6-0)-plane is given by

the equation

e - ab - arctan (tan O/cos 0); if e < 0, then e 4-8 +rr (3.TT)

where 8 - 0/2. The 8-coordinates of the nodal points on the r-th curved

row, Fig. 3.11, are calculated as

e- b(r-l)/(rb-1) (3. 15)

where rb is the number of the last row, 8 . and r - 1 corresponds

to 8 - 0. Eq. (3-15) describes a uniform subdivision of each meridian,

as shown in Fig. 3. 11.

The stress and displacement conditions at 0 - Tr have already

been discussed in the previous section. The displacement conditions

at the bottom boundary (9b), must be replaced by displacement boundary

conditions of symmetry.

v cos T- w sin -0, at 8 - 8b (3-16)

where n is the angle that the bottom boundary makes with the (-axis

in the (6-0)-plane, i.e., the normal displacement of the bottom nodal

points is zero. The stress boundary conditions a B a r 0 at
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e b will be automatically satisfied by the finite element

method.

Table 3.7 gives the numerical results for the cases of v- 0

and 0.3 f or a - nr/4f, chosen for examples. Using Eq. (2.31) the

values of m are graphically calculated in Fig. 3. 12. Finally, the

extrapolation point are obtained in Fig. 3. 13, and compared to the

values X-0.296, calculated in (3] and \-0.2966 in (13]. Indeed,

the eigenvalues are independent of Poisson ratio for a fixed (7, The

fact that all three values (x=0.296 obtained by different researchers,

using independent methods of solution), are the same, further confirms

that the present solution is correct.

Now, the question arises for the value of the convergence rate

m when no exact solut ion is available and hence Eq. (2.31) cannot be

used as before. For such cases, the extension of Richardson's hm

technique, described in Section 2.3D, was found to work exceptionally

well. All numerical results were run in a simple subroutine, which

is included in the program, Appendix B. The rn-values are given in

the preceding Tables, next to their corresponding numerical values.

The extrapolation values for all cases thus far studied came within

0.4 error, as shown in the tables. Again, reaffirming the present

method of solution and justifying the use of the extrapolation tech-

nique proposed in Section 2.3D. For the sake of brevity, whenever

an extrapolated value is mentioned herein it will refer to this

technique, unless otherwise specified.
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a) MODE I (Symmetric opering)

N=18 =3Tr

-- N=32t 1.2 0:.0,

< 0.6. .m1.5 g N=72
0 0

N128 7
1.6- \ exact:- 0.2966

Nzsnumber of finite elemnents

1.8 i % i i-
0.6 U./ 0A8 0.9 1.0 1.1

1/2 log N

Fig. 3.12: Finite element convergence pattern for

right angle corner at front edge of

planar crack inside elastic body.

Mode T, p -0.
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a) MODE I (Symmetric opening)

0.40.-314,7T0
32

X N=128

(exact)

0.251
0 20 40 60 80 100 120

Fig. 3. 13: Extrapolation of numerical results to

N -w co f or the case in Fig. 3. 12.

Mode Is p = 0.
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Note that the extrapolation value in the subroutine corresponds

to the first coefficient of the straight-line with optimum slope m,

i.e., the value of the regression line at h - 0, N. m.

A final check was performed on the orthogonal crack in Fig. 3. 1,

for Mode I opening. It consisted of including the entire (8-0)-domain

of the unit, sphere, i. e., 0 r -n r/2, 0 g 0 a 27T; where no symnetry

considerations need be made. One node may be fixed in the 0-direction

to prevent rotation and thus implement a statically determinate sup-

port for the body. However, since rotation implies X 1s see Section

3.2h, the support is normally not necessary unless ) - 1. This also

means that in this finite element method it is sufficient to impose

only one force at a nodal point to achieve the mode required, and

not two forces of opposite direction applied at two opposite nodal

points.

The numerical results are given in Table 3.8 along with the

convergence rate m and the extrapolated value for the case V - 0. 15,

but excluding the value for N - 18. If this last value were to be

included one would obtain m - 2.6 and Xextrap. - 0.5267. However,

note that N - 18 in the domain 0 T e T /2, 0 c 2TT is a very

coarse mesh, thus, inducing an error which would not be of the order

O(hm), m < 2. Since the convergence rate is to be limited by

m a 2, as mentioned earlier in Section 2,3C the value for N - 18

has to be excluded, even though the extrapolated value using all four

points is within a 2% error. And as a rule of hand, so will future

values for N - 18 when the entire domain is included. For such cases,

the number of finite elements will be raised tn 200 and 288, where
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one would again expect a convergence rate less than quadratic and

more accurate results.

C.) Antisynetric openings, Mode II and III.

For antisymmetric crack openings the question of proper anti-

symetric conditions at 0 - ,r and at the free surface 8 - W2 are

more complicated than for the symnetric opening. It appears that

Modes II and III cannot exist seperately at the surface point (which

was first suggested by Professor L. M. Keer of Northwestern University

in an uncontested $5.00 bet). Indeed, it is impossible to imagine

conditions of zero stress state at the half-space surface (G "r/2) to

be satisfied by a displacement field which would exhibit either

Mode II or Mode III antisymmetry. The finite element claculations

confirmed this also; L.e., when the full domain OC(0,T/2), C(0,2r)

was used and Mode II antisymmetric displacements were forced in two

symmetrically opposite nodes at the crack surface (n - 1 at 0 -r/2

and n - -1 at 0 - 3T/2, both at e - ,T2), the v displacements at

O T were found to be nonzero and exhibit perfect antisymmetry

about 0 - TT; which is characteristic of Mode III. Furthermore, a

surface nodal displacement was forced such that Mode III opening

would be obtained, i.e.., the v displacement at the crack surface.

However, the eigenvalue slowly converged to the same eigenvalue when

Mode II opening was forced. Thus, the antisymmetric Modes II and III

are always combined at the surface point.

Therefore, one may impose at 0 - T, the symmetry plane, either
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Mode Il-type condition: u sin B - v cos O P 0, or (3-17)

Mode II-type condition; u co 0 - v sin e = 0, (3.18)

or any linear combination of these two conditions, among which the

simplest choice is

u(B,rr) - V( 0rr) -0. (3. 19)

The antisymetry condition for stress in both modes is o -- 0 at

- , which is again automatically satisfied by the finite element

method as a natural boundary condition.

The singularity exponent ) in either case is the same, and

because it belongs to a combination of two modes, ), is a double root.

Table 3.9 gives the numerical results when Eq. (3-17) is used

and Table 3.10 gives the numerical results when the full domain

Be(0,rr/2), O(0,2 T) is used where no symmetry analysis is made. The

extrapolated values in Table 3.10 differ significantly from those

of Table 3.9- Hence, at this point it was necessary to increase the

number of finite elements to 288 for the domain OC(0,2Tr), as shown in

Table 3.10 for the case v - 0.3. This case yielded the same extra-

polated value as that obtained from the domain Oe(0,rT). Fig. 3. 14

shows the numerical results of Table 3. 10 with the extrapolated

values of Table 3. 10. Note that for the case v - 0 the eigenvalue
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v/N 18 32 72 128 m %extrap. Benthem

0.15 0.789175 0.639575 0.572169 0.549754 1.99 0.5234 0.5164

Table 3-8: Numerical results. Eigenvalues for

orthogonal crack with full body; 0saIT/2,
OcOc 2Tr; using N finite elements.

Mode I, p - 0.

v/N 18 32 72 128 m %extrap.

0.0 0.612712 0.564782 0.529639 0.517067 1.926 0.50001

0.15 0,551476 0.500448 0.463557 0.450516 1.966 0.43533

0.3 0.521529 o. 466533 o. 426113 O. 411730 1.922 0. 10207

0.4 0.530050 0.4,6549i 0.415043 0.398513 1.860 0.39591

Table 3.9: Numerical results. Eigenvalues for

orthogoual crack; 0:90:9/2, ObgSiT; using

N finite elements. Modes II and i1.

v/N 32 72 128 200 288 m Kextrap.

0. 0 0.698366 0.597145 0.555897 1.580 o. 48.32

o.1 0.653992 0.545166 0.5o14.84o 1.842 o.44715

o. 15 o.639572 0.528586 o.487784 1. 862 0. 43030

0.3 0.616785 0.1498913 o.454053 o. 432559 0.42 0677 1.880o 0.0202

0.. 0.635112 0.506881 0.452256 1.842 0.34790

Table 3.10: Numerical results. Eigenvalues for orthogonal

crack with full body; 0 s9r/2, 0rS2TT; using

N finite elements. Modes II and II.
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0.8
b) Numerical Results for Various Grids

MODES I and 11 (Antisymmetric opening)

0.7
. N=32

0.6
N=72

0.52.5zCo4
"- N=28288

0.4- X=0.435 4 .0 0 ~ .9

N: number of finite elements
(p=O)

0.3 1 - .i i
0 0.1 02 03 0.4 0.5

Fig. 3.14: Numerical results for orthogoaal

crack, Modes II and III.
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b) MODES I and I1 (Antisymmetric

N=18 /4-7Topening)

1.0 *N=32

m=1.7m1.

v:0.z/ 0/:.25

t/4 V:0.0, exc :0. 296
7 a 0.25, Xexact 0.3285 I%-2
N = number of finfite elementsN=2

1.6
0.6 0.7 0.8 0.9 1.0 1.1

112 tog N

Fig. 3. 15: Finite element convergence pattern for

right angle corner at front edge of

planar crack inside elastic body.

Modes 11 and TI.11
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0.50 b) MODES I and Z (Antisymmetric opening)

0.45-

X X=0.3285

10001281

Fi.316.3raoaio0fnubrca eult

X= 0.2fo9as6n6i. .15 ods

(aedact)

0.5I
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is exactly X - 0.5, which was again expected. No solution seems to

exist in the literature concerning Modes II and III for comparison

in Fig. 3- 1.

The antisymmetric opening, Modes 11 and III, was also checked

against the known analytical solution of a crack corner in an

infinite elastic space, Fig. 3. 10, page 84 solved by Keer and

Parihar [14a], They found that the solution for these modes to be

irreducible to potential theory and to depend on Poisson ratio v.

For example, for a crack corner of angle C- T/Ii. the eigenvalues

0.2966 and 0.3285 were obtained for Poisson's ratio v 0.0

and 0.25, respectively. Table 3.lOa gives the numerical results

for both cases. Figs. 3. 15 shows the convergence pattern using

Eq. 2.33 and Fig. 3 .16 the extrapolated values using the convergence

rate m obtained graphically from Fig. 3. 15. The values for m and

Xextrap" using Eq. 2.39 are also given in Table 3. lOa.

3.4 Crack Propagating at the Surface

From the practical point of view, the case of a propagating

crack is of main interest. There exist certain physical restrictions

for the solution of a propagating crack which can be derived from

energy considerations. For cracks that do not propagate, the only

restrictions are that the strain energy within a small sphere about

point 0, as well as the strain energy per unit length of edge within

a small cylinder whose axis coincides with the crack front edge 00',

Pig. 3-1, be integrable. Let the strain energy by denoted by Eo,

then
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E0 o f Cjj (3.20)

The above expression can be simplified by asymptotic analysis.

Noting that near the surface terminal point 0, the displacements

behave like:

u 1 "rX (3. 21a)

where w denotes proportionality. Hence,

Bui Br -r"-l(3. 21b)

rij (3. 21c)

dv .r2 dr (3. 21e)

yields,

K0  rX'(3.22)

For the strain energy to be integrable, or bounded, as r -,0, re-

quires
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Re(X) > 4 , stationary crack. (3.23)

As the crack propagates, energy flows into all points of the

crack front edge and is consumed by the process of separation, i.e.,

creation of crack surfaces. The energy flux near the points of the

crack front edge may generally have two components: (a) The flux

E1 which is parallel to the edge and flows into any point on the

crack front edge, including the surface point 0. E1 must be zero

because the trace of the surface point 0 as it moves is a line,

and a line can be associated only with a negligible amount of ad-

ditional surface energy. (b) The flux E2 of energy into the moving

crack front edge per unit length of edge must be finite and non-

zero because the surface energy y is finite and non-zero.

The first condition (a) requires that

E1 - ff. aij(Buj/ax) do = 0 (3.24)

where 0I.j is the cartesian stress tensor; u are the cartesian dis-

placements; x is the coordinate in the direction of the crack ex-

tension; and 0 is a surface of a sufficiently small sphere centered

at point 0. Noting that do - r2sin 0 dedk, and from Eqs. (3.21), it

follows that El _ r 2 , and for E1 to be zero as r . 0, it is necessary

that

Re(X) .0 -(3.25)
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which is a weak condition on a propagating crack.

The second condition (b) requires that

ai J (2jU i /x) rldo (3.26)

where (rl,o) is a polar coordinate system in a plane normal to the

crack front edge; L is a circle of radius r 1 in this plane centered

around the edge; x is the direction of crack propagation; u i are

the cartesian displacements; and aiJ is the cartesian stress tensor.

Also, the energy flux E2 may in general be expressed by Rice's

J-integral [23,31] for linear elastic behavior:

0,1 Ci1dy - ,,j , Lul r~do) (3.27)E2 : JL axOj¢jY Ojn l

in which dy - r I sin 0 do and a/ax - cos O(a/arl) - (sin O/rl)

(B/B). On physical grounds, the flux E2 must obviously be positive,

non-zero and finite at all points near the surface terminal point 0

of the crack front edge. Furthermore, the flux E2 may be expected

to be constant along the crack edge, assuming that the energy needed

for the creation of new surface is the same along these points.

However, this last requirement may be simplified by the asymptotic

deductions. When Eqs. (3.21) are substituted into Eq. (3.2T), it

follows that (- denotes proportionality).

E2 r 2 X1 (3.28)



Thus, for E2 to be bounded and non-zero as rl . 0, it is necessary

that Re(2% - 1) - 0, or

Re(%) - J, propagating crack (2.39)

This condition must be satisfied for the terminal surface point of a

crack that propagates, but not for a stationary crack, as it is well

known (23,31J.

According to Eq. (3.29), a crack which propagates, or for

which propagation is iuinent, must exhibit x - (the exponent being

assumed to be real if there are no two dissimilar materials). By

far, this case is of the greatest practical interest. Therefore,

a meaningful question is to ask whether there exist inclinations B

of the crack front edge Fig. 3. IT and y of the crack plane Fig. 3- 18

for which the eigenvalue X - ;. is attained. For the orthogonal

crack edge (y - T/2, y - 0; Fig. 3.1), propagation is obviously pos-

sible only if V - 0.

Tables 3.11 and 3. 12 give the numerical results for the symmetric

(Mode I) and antisymnetric (Modes ii and III) cracks whose plane is

normal to the surface (y - 0) and whose edge inclination angle 9

varies for various values. The extrapolated results are plotted in

Fig. 3.20.

It is interesting to note that the solutions presented in Fig. 3.20

agree with the common sense that as the crack "size" defined by the

edge inclination angle 8 decreases, i.e., there is more material

that is not cracked, the eigenvalue X increases; and as the crack

"size" increases, i.e., there is more material that is cracked, the

eigenvalue X decreases. In other words, the stress singularity

exponent X-l increases (weaker singularity) as 8 decreases and
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Fig. 3.17- Spherical coordinate system at 
termination

of .crack front edge 00' at body surface.

TInclined edge. (The unit sphere is shown

only to visualize the coordinates; the body

is semi-infinite).

Fig. 3. 18: Spherical coordinate system at 
termination

of crack front edge 00' at body 
surface. In-

clined edge and inclined crack plane. (The

unit sphere is shown only to visualize the co-

ordinates; the body is semi-infilite).
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i~.

V/-

Fig. 3.19: Finite element grids used for cracks

whose edge and plane are inclined.
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0.75-

EFFECT OF 9 ON A.
0.70

MODES Hand M

(Anti sym met ric

0.60-

MODE I

Q55-- (symmetric
opening)

C50-

045-

0.40

0,35-

0.2 020.4 0.5 R/7C6 0.7 0.8

Fig. 3.20: Extrapolated values of X versus crack

inclination angle ~
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decreases (stronger singularity) as $ increases. Also note that

the lines in Fig. 3.20 are not straight lines and they seem to ap-

proach 1 " 1 for - 0., i.e.., there is no crack and one would ex-

pect rotational effects to take place, see Section 3.2 A; and they

seem to approach ), = 0 for $ -o T, i.e., the semi-infinite body is

completely cut in half and one would expect rigid body translations

to take place.

In order to substantiate the accuracy of these results, the

approach to the eigenvalue problem was modified by treating the

stiffness matrix as a function of angle $ rather than X, i.e., X was

fixed to 0.5 and Eq. (2.27) was treated as:

M

I kij(0) Xi . 0, j 1,2,...,M9)

J-1

The eigenvalue search routine based on the Newton method was easily

converted to search for B instead of X. This alternate method was

tried for the case v = 0.3 in Mode I opening and drawn separately in

Fig. 3.21(a). The numerical results obtained by this method and based

on up to 288 elements are given in Table 3.13. The convergence

pattern of versus N is shown in Fig. 3.21(b) along with the extra-

polated value (N + -) which yields the same value as that obtained

grafically in Fig. 3.21(a). Therefore, the values of 8 for each

value of Poisson's ratio for which = 0.5 from Fig. 3.20 are drawn

in Fig. 3.22.
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0.60
a) MODE I (Symmetric opening)

(p =0 0.8

0.5X 0.5 .5

PROPAGATI ON
0.50,

b) MODE I and M (Arrtisymmetic opening)
p/- (p=O)

0.45--~ ~~ 0.5 SL RCE

0.45 ~ 0ACK0

PROPAGATION

0.40

0.35 I
0.0 0.1 0.2 0.3 0.4 0.5

Fig. 3.22: Dependence of crack front edge angles Q
of a propagating crack upon Poisson's

ratio v. (a) Mode I., (b) Modes II and

III. (Normal crack plane).



The physical meaning of the edge inclination angle 6 for which

X " 0.5., is that for a propagating crack the symmetric opening,

Mode I, gives an obtuse angle (p > ,/2), i.e., the surface pont 0

trails behind the interior crack edge; and the antisymnetric opening,

Modes II and III, gives an acute angle ( < 7/2), i.e., the surface

point 0 moves ahead of the interior crack edge. The fact that they

are different has an important physical consequence: At the terminal

point of a crack whose plane is normal to the surface a combined

mode propagation is impossible, i.e., the crack would assume such a

shape that its surface terminal point propagates either with a sym-

metric opening, Mode 1, or with an anitsymmetric opening, Mode II and

III, but not both combined.

In view of this result, it is natural to ask whether there exist

an inclination angle y of the crack plane for which the A-values for

the symmetric and antisymmetric exitation of a propagating crack

0, = 0.5) would coincide, see Fig. 3.18. However, the numerical results

given in Tables 3.14 and 3.15 for the case v - 0.3 and drawn in

Fig. 3.23 indicate that this never occurs, and as the crack plane becomes

inclined (S ±0), the S - values for Re(A) - 1/2 vary as a function of 6.

In these cases it is no longer possible to distinguish between symmetric

(Mode I) and antisymmetric (Modes II and III) openings, for there is no

geometrical symmetry. For each of the two a-values, there exists at

point 0 a certain limiting ratio K1 : K2 : K3 of the stress intensity

factors for Modes I, II and III and no other ratios are possible. So,

for cracks of inclined plane, the propagation of the surface point takes

place always in a combination of all three modes. Conversely, for a

... 1mmm-r n -Ammn
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given ratio Kl: K2 : 1(3, one can generally find the angles 0 and 6

which must get established at the surface point.

In solving this problem one must take into account the entire

domain 0 e e So y ! o g 27 + y, because the symmetry is destroyed

when y > 0. Fig. 3.19 shows a typical finite element grid in the

(9-0)-plane corresponding to the domain enclosed by the dashed curve

of Fig. 3.18.

3.5 Experimental Fracture Specimens

Some recently obtained experimental results allow a check on the

present numerical results. These are the fatigue loading fracture

tests made by P. D. Bell and W. J. Feeney [151, to whom the author

is"obliged for making their results available, and are reproduced in

Figs. 3.24 and 3.25. These photographs show the crack arrest marks

observed in fatigue Mode I fracture tests of alluminum alloy and

titanium alloy specimens. The Poisson ratios of these materials are

(according to material handbooks) about 0.33 and 0.32, respectively,

and for which the present solution, Fig. 3.20 gives 8 A 102 for both

materials. These angles are plotted and compared in Figs. 3.24 and

3.25. Comparatively, the observed trend agrees with the numerical

resutls in that the surface point trails behind the interior crack

edge (i.e., $ > 900) rather than moving ahead. The numerical value

does not agree too closely with the observed average, but considering

that some small scale yielding and inelastic strain reversals occur

in the actual tests, and that the plastic "shear lip" phenomenon can

along cause B > 90*, the comparison cannot be qualified as poor.

One must also realize the inevitable statistical scatter of the

experiment.
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The crack arrest marks indicate the line of constant ) = for

which propagation is established. The curves that these marks trace

may be explained in the following manner. Prior to propagation, the

two-dimensional theory of fracture mechanics gives X= for the

interior of the specimen (plane strain in the middle regions and

plane stress near the surface) while X > j will hold at the surface

point. When propagation is established the interior edge (
will move perpendicularly to the crack independent of Poisson ratioJ

while the surface point (weaker singularity, X > ,t) will have to

reach X-jby allowing the crack edge to shift angles and thus moving

behind the interior, as predicted in Fig. 3.20.

Even though experimental results are nonexistent for Modes Il

and 111, a similar reasoning may be made. Again, the two-dimensional

theory of fracture mechanics gives X &for the interior points

while X < .4will hold at the surface points. When propagation is

established, provided the propagation plane remains in the vame plane

as that of the crack, the surface point (stronger singularity x <

will have to reach X = by allowing the crack edge to shift angles

and thus move ahead of the interior, as predicted iL, Fig. 5.20.

3. 6 The Two-Material Interface

In plane elasticity, the singularity exponent of an interface

crack between two dissimilar materials is complex. Consequently,

the displacements in a close enough neighborhood of the crack tip

oscillate along the radial ray. This implies an overlap of crack

faces which is, of course, physically impossible and is prevented by
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contact of crack surfaces. Nevertheless, it is generally believed

that the field for complex X iF at least applicable in not too close

neighborhood of the crack tip, well beyond the region of oscillations.

That this is indeed the case for Mode I cracks has been demonstrated,

by Comninou [22]. It must be noted, though, that recently more

physically meaningful solutions which take into account the contact

stresses on crack surfaces have been developed [22], but their adaptation

is beyond the scope of this program. Thus, while extension of these

developments to three dimensional singularities should be of high

priority, at present we must be content with the less than perfect

oscillating singularity.

The foregoing solution applies without any change to cases

where k is complex. Then, of course, kij and Xj, Eq. (2.15), must

be also considered complex and the program must be converted to

complex arithmetic, which is easily achieved by proper type declara-

tion of FORTRAN variables. Some difficulties were caused by the need

of an equation solving subroutine for complex banded nonsymmetric

matrices. Such subroutine has not been available in standard soft-

ware packages, and so it had to be developed, and it is listed in

Appendix C, page 144.

A.) Check cases.

In the first four sections of this chapter it was noted that the

convergence of the eigenvalue as the number of finite elements in-

creased was systematic and an extrapolation technique was thus developed.

In the check cases where the eigenvalues are complex, the real part
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was found to behave equally well) but the complex part did not. In-

stead, the complex part of X gave nearly the exact value for any

number of finite elements. These check cases were the well known

two-dimensional interface crack solutions and the problem of a rigid

corner stamp of angle 28 which was solved by Parihar and Keer [14b].

The two-dimensional solution for the exponent is given by

[32,33)

S +y (3.3o)

where,

K,

y log [ 1 (3.31)12 1l P2 2 L2

and Ki  - 4i for plane strain,(since generalized plane stress

cannot be modeled by the program).

For a study case, materials whose Young's moduli have the ratio

EI/E 2 - 1/40 and whose Poisson ratios have the same value vl - 2

0.3, were chosen. For these values Eq. (3.31) yields Y1 = 0.0887.

The domain to be considered must be 0 A e < TT/2) 0 : 0 i 2 17, where

the elements in the region 0 > 17 have a Young modulus forty time larger

than those in the region 0 < , but both regions have the same Poisson

ratio v, -V2 - 0.3; and to simulate the two-dimensional problem sup-

ports perpendicular to 8 = /2 must be placed. The numerical results

were: -- 0.65047 + 0.065481; 0.57329 + 0.085281; 0.54288 + 0.08785i

for N 3 52, 72, and 128 elements, respectively. The extrapolated
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value of the real parts gives 0.49709 which is within 0.4% error of

the exact value of 0.5. Note that the imaginary part of the eigen-

value using 128 elements is already within 1.5% error. When v - 0

for both materials, the plane strain solution [33] also applies for

the surface singularity with an orthogonal crack edge; for a 2:1

ratio of young moduli this gives A - 0.5 ± 0.0535i; whereas, the

program yielded Im (A) - 0.0514 for N = 128.

For the second study case, a rigid corner stamp of angle 2$ =

0.2886 on a semi-infinite body of Poisson ratio v = 0.3, were chosen

from the table in Ref.[14b] where the analytical solution is given

by 0.2474 + 0.0409i. The numerical results for this problem were

X - 0.37044 + 0.043931; 0.3128 + 0.04532i; 0.28804 + 0.04509i for

N = 32, 72, 128 elements, respectively. The extrapolated value of

the real parts is 0.241, again within 0.4%; and that the imaginary

part using 128 elements is within 10. There may be two possible

reasons for the imaginary part to be in such relatively large error:

a.) The representation of the exact domain with finite elements is

not very accurate for such angle , which unfortunately was the

largest angle that Parihar and Keer could consider, b. ) The ana-

lytical solution obtained by Parihar and Keer involves an approximate

function substituting a Bessel function, which restricts them to

consider only small angles.

In either case, the solutions obtained with the present pro-

gram show that numerical results can be obtained with reasonable

accuracy.
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B.) Additional results

Further cases were run using the present program for which no

solutions have been given before. These were the results for v > 0.

i.e., the plane strain solution is not applicable.

a.) The singularity for an orthogonal crack edge of an inter-

face of two materials with a Young's moduli ratio of 2:1 and equal

Poisson ratio, the program gives Im(X) ±0.0399 (N - 128) for

v - 0.05 and Im OL) ±0.006 (N -128) for v -0.3. It can be

noted that Im (X) decreases with increasing v. For v =0.3 and a

30:1 ratio of E, the program indicated Im (.X) to be 0 or almost 0.

b.) For these cases, the program again showed Im (X) to be

close and almost 0. For an interior crack plane of an orthogonal

two-material interface, the program indicated that a crack with a

front edge orthogonal to the two-material interface has A =0.545,

0.521, and 0.499 for E - rations 1:1, 5:0 and 10:0 for v 0.3 (N c)

3.7 The Notch Surface Singularity

Solutions for the surface singularity at notches have not been

given before. The present program can readily handle notches with

higher accuracy since the material domain decreases with the size of

the notch angle. Fig. 3.26 shows the numerical results (N - )for

notches terminating at the surface with orthogonal (0 =r/2) and sym-

metrical opening (v- -ac).
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CONCLUSIONS

The finite element method in angular spherical coordinates provides

a powerful general tehcnique for determining three-dimensional elastic

stress singularities. The numerical results for cracks whose edge is

normal to the surface and for crack corners in an infinite space are

in close agreement with the analytical solutions of Benthem, and Keer

and Parihar, respectively. The front edge of a propagating crack

must terminate at the surface point obliquely. The values of this

angle are different for symmetric (Mode I) and antisvmmetric (Mode II

and III) crack opening; which indicates that a combined mode propagation

is impossible at the surface point of a crack whose plane is normal to

the surface. For Mode I, the surface point trails behind the interior

of the crack; while for Modes II and III, the surface point moves ahead

of the interior of the crack. For cracks of inclined plane, the

propagation at the surface point takes place in a combination of all

three modes.

The numerical results for a rigid corner stamp on a semi-infinite

space are also in close agreement with the complex analytical solution

of Keer. Some numerical results of complex singularities are obtained,

as well as some cases of notches.
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APPENDIX A

DERIVATION OF THE

VARIATIONAL EQUATION

The combination of the equations of equilibrium, Eqs. (1.7a-c)

with the boundary conditions, Eqs. (1. la-c) is given by the vari-

ational statement Eq. (1. 12). With the intention of using the

finite element method, Eq. (1. 12) has to be reduced to an equation

which involves no higher than first order derivatives and which

automatically includes the boundary conditions. In the following

derivation the asterisk * indicates terms, or term, which have been

added and substracted.

Substituting X rXet and X from Eqs. (1.Ta-c) into the surface
0

integral of Eq. (1.12) yields

FT[[Q(x -1) -2 + 2X](XF + 2F + G + G cot 9 + 1 H +
~J .Le sine 6

- [(X+1)Ge - Fee- cot e[(X+1)G - Fe] +

+ 1 F - H - ) sin 6 6F
sin 9 sine9 00 0 0E

+ [2XG + 2XG cot 8 + -sn H (2XG + 2XG cot e +

8sine0 0 (2 0 x~oe

2sine1 H0 )] *sin 9F + 1(Q+2)(xFe+2F +G9 +G9 cote -

2 sin e +H cos 1 +H cote-sin2e  ssin n 00 sine 0 sine 8 0
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1 G ) + >1(+1)G - Fe] sin e6G + [- H - 2G cot2e

(2- H - 2G cot29)]*sin e 6G + (Q+2)(XF +2F +

H X~~~~si-nF )+(e

+GB + G cot e + -in 1 () +

sin 20 sin H 0 0  sine 0 909

1 Cos SG - 1X (I-AHct 20 +

.H ct__--- -+ 2o 0G si
s 2 o sin8 sine e ee)--

2 sin 80 sn2e 0

(A.l1)

Arranging some terms and cancelling others (a light slash indicates

terms which cancel), Eq. (A. 1) is reduced to:

_)22+(oF+2F+Gg +G cot 9 sineI

e T~ 0) otsine

+2X(XF +2F + G +G cot e + H 2X + (G8 ct +I H)

+ (xG - Ge + Fee) + cot e(XG - G + F8 ) +

-d~a*AM& Ti8
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1 1

+l-- (s-'' F + XH - R ))sin e 6F
s ine0 sin e 00 0 0

[q(XF +2F +G +G cot e - 1-;, + H Co 2 R)
0 e ee- e s itfe s in e e0 sine0

*2(XF + (1+ 1)F +Ge +Gecot e 1 G + 1 --' Cos H)
1e''ee e 9 ;G+nH 9 0  sin 2e 1

+ -- cote+- G + x(x+I)G - XFsin e e0 0 s in e 00

222
-2G cot 2 -8 -2 _ N + 2G cot 2sine e

+ [-Q cot e(XF+2F+G + - + G cot 9)
sine e

+ Q cot e(XF + 2F + G + ;-i G cot 9)]*]sin 9 6G

* Q+2F + G cot 9 + - )
esin 0 0 sin 9 0 0

2 1

s- %F F + (1+ 1W +G + G cot a + uine )

sin 0 08 s0ine8

* (H - cot 1+ H +Cs

.--L_ F + ( ) + cot 8(He - cot0+s~-- G)+sin i 00 sin 0

sin 0/~A/CsU~fl -HotMimi0 )
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+cot e(He -H cot e+ G ) + (2 co - - +2)-

esin e 0 sn2 6 sn2 +2*I

2 2 G + 2 H1]sin e 6H j dedo (A.2)
sin e eo ~ 0  A2

The terms multiplied by sin e 6Gare arranged to form:

[Q(XF + 2 Fee + G + Gecot9 e 1- G + 1 H oe Aa e e esin2---- sin---- 90 e sin a HO)+

+ 2 (Gee + Fe) + cot eEQ(XF+2F+G +-F--+G H + G cot 8)+ee 8esin 8 e+G o )

+ 2(Ge + F)+ (H Hcot e + 77n- G - 2 cot e(- 1 -Hs s 9 0 sin e o

+ G cot 9 + F) + X(X + 1)G + 2F - Q cot 8().F + 2F + 0 +

+ - + G cot 9) + XF9 - 2( 2--o--- - -n 9 )G-e 6G
sine a sine9 si

(A. 3)

Placing Eq. (A.3) back into Eq. (A.2) and rearranging terms:

fl([Q(-1)-2](XF+2F+Gs+G cot + 1 H )
sin e 0

+ (XG9 -G9 + F 8 ) + cot (XG - G + F)
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21 1

+-(- F + X),R - H))sin 6Fsin 0 sin 0 00 0

+ (-Q cot (XF + 2F + G + G cot e + +I )+
9 sine 0

-2 cot ( H +F cot e+F) +2(XG -G+Fe) +.(0 -)G

2F +G_+G co1 .co -Cos

e e sine sin e eo sin 2

1

+ 2(G 8g+F 9 ) + cot O[Q(XF+2F+G +G cot 9+ ii ) +

1 1+ 2(G+F)] + -(H -H cot 9+ 1 N .sin 9 bG
+sin eeo sin 8 -00"

+ (cot e(9 -R cot a+ G) + 2(- 1 F +XH -H)sine 0 sin-

+-F + X(X- I) H- H cot e + 1 + G 2C
sine 8 8,+H9  sin2e sine 9 0 sin e

cot G(H -H cot e + Ti 8 G)

+- Q (F +2F +G +G cot 9+- H)
sin 9 0 0 g0 0 sin 9 00

+ 2 (- -- +Gcot +F )s in 8 6H"_ dedo (A. 4)
sin 0 sin 9 00

which can be written as
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ji[csin e(x - 1) -2](xF+2F+G +G cot e+ %- ) + 2Xsin e(x+2)F

+ [sin (XGG+F ] + [-- F
S - - ' -ine -2(1) F

+ f(-[(Q+2)(2F+G +8 cot 9 sin (G) ,+F)+QF]cot8

+ 2(F e - G)+X(X +)G + XFe)sin B

+ -sin e((Q(F+2F+G +G cot G+ H )+2(GO + F ) ) ) ]be sin e 8

* [H8 -H cot + - G ]) BG

(sin e[cot e(He -H cot 8+s-n G ) + 2(-:--- F-

6 sin 0 si-nco 8 0 )
+ X(),+ )H +---n F I + -L [sin O(H -H cot 8 + -T-- )]
+xx1H+~L- -~ sin 90 a sin8

+ [Q(XF+2F+G +G cot 8+3=, H )+2(si H +G cot e+

~oe siGH)2---H+ o

+ F))b H lldedo (A. 5)

Integrating by parts with respect to e and o the respective terms
whose partial derivatives are broughtout, and using the negative of

Eq. (A. 5):
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flsin efEQ(1-%)+2J(xF+2F+G6 +G cot 0 )(L+)37

+ si eOG - +F (- F + XE -H06
0sn(GG 99 sin e 0 0

+ sin e[Q+2(2F+G6+G cot e + sin H 0) -2(G e F)+XQF)cot e

-2(F9- G) - X(),+ 1) - XF e)6G

sin eEQ(XF+2F+G +G cot 9 1 O)2' + F)16Ge sin~ 0 ) 8G e eG

+ (H H cot e + -LG )6 r,
sine 0

-sin ercot (He -H co +~- G )+2(- F H)+X(X+1)H +si9G0 sn90

"I sin F 0 1H + sin eEH9 -HR cot e + si G 0)611

e iin9 0 n 0

+i- £t(sin et(,G-G+F 6 G+[Q(XF+2F+G +G cot G+ H ) +
Vresi@
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1

+ 2(Ge+F) ]G + (1e -R cot e + 1 G )7?}ne

+ sin e +-" +XH-H)bF + ( e-8 - cot e +

+- G)6G + - [Q(F+2F+G +G cot G+-e ) +
sin 8 sin e sineo

1

+ 2(s-- H + G cot e + F)]6H]n ]]ds (A.6)

Substituting the boundary conditions, Eqs. (1. 1a-c), and

Eq. (A.6) into Eq) (1. 12) one can see that the line integral of

Eq. (A.6) cancels the line integral of Eq. (1.12). Thus, the boundary

conditions are automatically included, and the following variational

equation results:

1-Q(l-x) +2](xF+2F+Ce +G cot e 1 H ()

e sin9 0

--6F +XH-H)F
(x-G+Fe) Fesi sin 0

+ 1 '2)- eGe+ )+q~o
+ [[(Q+2)(Ge+2F+G cot 0 e+F)+XQF]cot

- 2(F9 -G) - (X+l)G - XF )6G

+ [Q(XF+2F+G +G cot 9+-sineH ) +e sin e ~ 2(Ge +F)]eGe
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11

+-- (H H cot 9 + - G )Gsin in 0 sie

- [cot O(eu - cot 0 +s-n G )+2(- F -H) +(+1)H +
6 in sinO e

F+ -I + (H H cot e+ G ) busin 0 8 s in 0 e

11 +2s-- ¢
-~-!-- [Q(XF+2F+G +G cot G+ -H )+( 1

+ G cot e+F)]16HR. sin e d~d (A. T)

Note that Eq. (A.7) does not have any second order derivatives

and that the notations in Eq. (1. 14) are those shown in Eq. (A-T).



APPENDIX B

FINITE ELEMENT PROGRAM WHEN EIGNEVALUE, X., IS REAL~

(See Chapte- II).
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APPENDIX C

FINITE ELEMENT PROGRAM WHEN EIGENVALUE, X, IS COMPLETE

(See Chapter II).
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